{"title":"Dynamic analysis of geometrically imperfect sandwich beams subjected to moving load and a porosity-dependent GPLRC core","authors":"Shiying Zhang, Shuna Zhang, Guotai Weng, Zhixin Wu","doi":"10.1007/s00707-025-04245-5","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a numerical approach for the dynamical response of geometrically imperfect multilayered beams subjected to a moving load. The multilayer beam with a porosity-dependent nanocomposite core and titanium alloy layers is analyzed based on a high-order shear deformation theory including hyperbolic functions. The large deflection assumptions are also included into the formulations. The core of the multilayer beam consists of six porous aluminum layers where each of them are reinforced by graphene platelets (GPLs) with different values of porosity. The equations of motion are determined using the Lagrange’s equation and are solved by the Ritz solution method for three different boundary conditions. The effects of porosity coefficient and graded pattern of aluminum constituents and their distributions on the forced vibrations are analyzed. Also, the effects of the length-to-thickness ratio and the weight fraction of GPLs are examined and compared. A good agreement is determined by comparing our formulation with other available works in the literature.</p></div>","PeriodicalId":456,"journal":{"name":"Acta Mechanica","volume":"236 4","pages":"2567 - 2582"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00707-025-04245-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a numerical approach for the dynamical response of geometrically imperfect multilayered beams subjected to a moving load. The multilayer beam with a porosity-dependent nanocomposite core and titanium alloy layers is analyzed based on a high-order shear deformation theory including hyperbolic functions. The large deflection assumptions are also included into the formulations. The core of the multilayer beam consists of six porous aluminum layers where each of them are reinforced by graphene platelets (GPLs) with different values of porosity. The equations of motion are determined using the Lagrange’s equation and are solved by the Ritz solution method for three different boundary conditions. The effects of porosity coefficient and graded pattern of aluminum constituents and their distributions on the forced vibrations are analyzed. Also, the effects of the length-to-thickness ratio and the weight fraction of GPLs are examined and compared. A good agreement is determined by comparing our formulation with other available works in the literature.
期刊介绍:
Since 1965, the international journal Acta Mechanica has been among the leading journals in the field of theoretical and applied mechanics. In addition to the classical fields such as elasticity, plasticity, vibrations, rigid body dynamics, hydrodynamics, and gasdynamics, it also gives special attention to recently developed areas such as non-Newtonian fluid dynamics, micro/nano mechanics, smart materials and structures, and issues at the interface of mechanics and materials. The journal further publishes papers in such related fields as rheology, thermodynamics, and electromagnetic interactions with fluids and solids. In addition, articles in applied mathematics dealing with significant mechanics problems are also welcome.