{"title":"Effect of Different Parameters on Membrane Concentrate Treatment by using Vacuum Assisted Air Gap Membrane Distillation Crystallization (VAGMD-C)","authors":"Oyku Mutlu-Salmanli, Ismail Koyuncu","doi":"10.1007/s11270-025-07945-9","DOIUrl":null,"url":null,"abstract":"<div><p>The concentration problem represents a significant challenge for membrane processes, necessitating supplementary treatment and management strategies. This study assesses the efficiency of a vacuum-assisted air gap membrane distillation/crystallization (VAGMD-C) system to addressing this issue, specifically focusing on the removal and recovery of boron, a critical raw material. Synthetic boron solutions were employed to optimize key parameters such as concentration, pH, and membrane type. Following this, real reverse osmosis (RO) concentrate was treated under optimized conditions using both commercial and custom-fabricated membranes. The experimental analyses included flux measurements, boron concentration assessments, and boron rejection rates, along with scanning electron microscope-energy dispersive spectrometry (SEM–EDS) and X-ray fluorescence (XRF) analysis of the resulting crystals. The results demonstrated that achieving up to 44.6% boron content in the crystals is feasible by utilizing the fabricated nanofiber membrane (NF) within the VAGMD-C system.</p></div>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":"236 5","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11270-025-07945-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-025-07945-9","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The concentration problem represents a significant challenge for membrane processes, necessitating supplementary treatment and management strategies. This study assesses the efficiency of a vacuum-assisted air gap membrane distillation/crystallization (VAGMD-C) system to addressing this issue, specifically focusing on the removal and recovery of boron, a critical raw material. Synthetic boron solutions were employed to optimize key parameters such as concentration, pH, and membrane type. Following this, real reverse osmosis (RO) concentrate was treated under optimized conditions using both commercial and custom-fabricated membranes. The experimental analyses included flux measurements, boron concentration assessments, and boron rejection rates, along with scanning electron microscope-energy dispersive spectrometry (SEM–EDS) and X-ray fluorescence (XRF) analysis of the resulting crystals. The results demonstrated that achieving up to 44.6% boron content in the crystals is feasible by utilizing the fabricated nanofiber membrane (NF) within the VAGMD-C system.
期刊介绍:
Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments.
Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation.
Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.