Quantum computing using photons

IF 2.6 3区 物理与天体物理 Q2 PHYSICS, NUCLEAR
Christophe Couteau
{"title":"Quantum computing using photons","authors":"Christophe Couteau","doi":"10.1140/epja/s10050-025-01517-5","DOIUrl":null,"url":null,"abstract":"<div><p>Photons as quantum bits have been amongst the first physical systems to be used for experimentally demonstrating some of the basic concepts in quantum computing starting from entanglement, to teleportation, to the realisation of a two-qubit CNOT gate and more recently for demonstrating quantum advantage using light. Photons can thus be used as qubits and are a potential platform for a future quantum computer. It is hard to predict which platform will win the race, perhaps none of them will surpass the others. What is for sure is that light can not be ignored altogether as this is the building block for communications and for propagating information in general, and thus for quantum information, in particular over long distances through optical fibres or via satellites. We will first develop what are the different ways of encoding qubits with photons and why photons are interesting systems with a great potential. We will then review some of the pioneering works up to what has been achieved more recently and we will conclude by what perspectives one can hope for using photonic qubits. Implicitly, in this work, we take the stand-point of a future fault-tolerant quantum computer using photons. In this review, some of the experimental technologies will be mentioned and briefly described but the reader will refer to further readings for more information onto how to produce, control and detect photonic qubits. It is also worth stating that this review has to be seen more as a first introduction to the subject.</p></div>","PeriodicalId":786,"journal":{"name":"The European Physical Journal A","volume":"61 4","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal A","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epja/s10050-025-01517-5","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Photons as quantum bits have been amongst the first physical systems to be used for experimentally demonstrating some of the basic concepts in quantum computing starting from entanglement, to teleportation, to the realisation of a two-qubit CNOT gate and more recently for demonstrating quantum advantage using light. Photons can thus be used as qubits and are a potential platform for a future quantum computer. It is hard to predict which platform will win the race, perhaps none of them will surpass the others. What is for sure is that light can not be ignored altogether as this is the building block for communications and for propagating information in general, and thus for quantum information, in particular over long distances through optical fibres or via satellites. We will first develop what are the different ways of encoding qubits with photons and why photons are interesting systems with a great potential. We will then review some of the pioneering works up to what has been achieved more recently and we will conclude by what perspectives one can hope for using photonic qubits. Implicitly, in this work, we take the stand-point of a future fault-tolerant quantum computer using photons. In this review, some of the experimental technologies will be mentioned and briefly described but the reader will refer to further readings for more information onto how to produce, control and detect photonic qubits. It is also worth stating that this review has to be seen more as a first introduction to the subject.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
The European Physical Journal A
The European Physical Journal A 物理-物理:核物理
CiteScore
5.00
自引率
18.50%
发文量
216
审稿时长
3-8 weeks
期刊介绍: Hadron Physics Hadron Structure Hadron Spectroscopy Hadronic and Electroweak Interactions of Hadrons Nonperturbative Approaches to QCD Phenomenological Approaches to Hadron Physics Nuclear and Quark Matter Heavy-Ion Collisions Phase Diagram of the Strong Interaction Hard Probes Quark-Gluon Plasma and Hadronic Matter Relativistic Transport and Hydrodynamics Compact Stars Nuclear Physics Nuclear Structure and Reactions Few-Body Systems Radioactive Beams Electroweak Interactions Nuclear Astrophysics Article Categories Letters (Open Access) Regular Articles New Tools and Techniques Reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信