Cellulose-Based Hydrogel Decorated with Green Cobalt-Doped CopperOxide Nanoparticles for Photocatalytic Degradation of Methylene BlueDye from Aqueous Solution

IF 4.7 3区 工程技术 Q2 ENGINEERING, ENVIRONMENTAL
Lovedonia Kgabo Kganyakgo, Wilson Marema Seleka, Daniel Masekela, Edwin Makhado
{"title":"Cellulose-Based Hydrogel Decorated with Green Cobalt-Doped CopperOxide Nanoparticles for Photocatalytic Degradation of Methylene BlueDye from Aqueous Solution","authors":"Lovedonia Kgabo Kganyakgo,&nbsp;Wilson Marema Seleka,&nbsp;Daniel Masekela,&nbsp;Edwin Makhado","doi":"10.1007/s10924-025-03533-4","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the effectiveness of a novel metal oxide-based hydrogel nanocomposite in degrading synthetic dyes in the presence of UV light. The nanocomposite is synthesized through the insertion of metal oxide nanoparticles (NPs) into a hydrogel matrix, optimizing the material's photocatalytic properties. The successful synthesis of the hydrogel nanocomposite was verified using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). Through determination of XRD parameters, a successful synthesis of Co-CuO HNCs with an average crystallite size of 10.21 nm was confirmed. SEM images showed that after incorporating spherical-shaped Co-CuO NPs into the hydrogel matrix, the surface of the final composite became rough and fragmented with a surface area of 4.06 m<sup>2</sup>/g. Optical studies showed that the bandgap was reduced as Co-CuO NPs were incorporated into the hydrogel matrix. Photocatalytic degradation experiments were conducted using methylene blue (MB) to assess the hydrogel nanocomposite's efficiency. The results demonstrate a significant enhancement in degradation rates compared to traditional photocatalysts, due to the synergistic effects of the metal NPs and the hydrogel network. Within 120 min, the photocatalytic removal efficiency of MB reached 96% at a pH of 10 using 100 mg of the catalyst. The photocatalytic degradation process followed a pseudo first-order kinetics with a rate constant of 0.0183 min<sup>−1</sup>. Moreover, scavenger studies showed that ∙OH radicals were major species responsible for the photocatalytic degradation process. The study highlighted the potential of metal-based hydrogel nanocomposites as efficient and sustainable photocatalysts for environmental remediation, offering a promising solution for the treatment of dye-contaminated wastewater. Future research will focus on optimizing the performance of the nanocomposite and exploring its practical applications in large-scale water treatment processes.</p></div>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":"33 5","pages":"2425 - 2442"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10924-025-03533-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymers and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10924-025-03533-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the effectiveness of a novel metal oxide-based hydrogel nanocomposite in degrading synthetic dyes in the presence of UV light. The nanocomposite is synthesized through the insertion of metal oxide nanoparticles (NPs) into a hydrogel matrix, optimizing the material's photocatalytic properties. The successful synthesis of the hydrogel nanocomposite was verified using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). Through determination of XRD parameters, a successful synthesis of Co-CuO HNCs with an average crystallite size of 10.21 nm was confirmed. SEM images showed that after incorporating spherical-shaped Co-CuO NPs into the hydrogel matrix, the surface of the final composite became rough and fragmented with a surface area of 4.06 m2/g. Optical studies showed that the bandgap was reduced as Co-CuO NPs were incorporated into the hydrogel matrix. Photocatalytic degradation experiments were conducted using methylene blue (MB) to assess the hydrogel nanocomposite's efficiency. The results demonstrate a significant enhancement in degradation rates compared to traditional photocatalysts, due to the synergistic effects of the metal NPs and the hydrogel network. Within 120 min, the photocatalytic removal efficiency of MB reached 96% at a pH of 10 using 100 mg of the catalyst. The photocatalytic degradation process followed a pseudo first-order kinetics with a rate constant of 0.0183 min−1. Moreover, scavenger studies showed that ∙OH radicals were major species responsible for the photocatalytic degradation process. The study highlighted the potential of metal-based hydrogel nanocomposites as efficient and sustainable photocatalysts for environmental remediation, offering a promising solution for the treatment of dye-contaminated wastewater. Future research will focus on optimizing the performance of the nanocomposite and exploring its practical applications in large-scale water treatment processes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Polymers and the Environment
Journal of Polymers and the Environment 工程技术-高分子科学
CiteScore
9.50
自引率
7.50%
发文量
297
审稿时长
9 months
期刊介绍: The Journal of Polymers and the Environment fills the need for an international forum in this diverse and rapidly expanding field. The journal serves a crucial role for the publication of information from a wide range of disciplines and is a central outlet for the publication of high-quality peer-reviewed original papers, review articles and short communications. The journal is intentionally interdisciplinary in regard to contributions and covers the following subjects - polymers, environmentally degradable polymers, and degradation pathways: biological, photochemical, oxidative and hydrolytic; new environmental materials: derived by chemical and biosynthetic routes; environmental blends and composites; developments in processing and reactive processing of environmental polymers; characterization of environmental materials: mechanical, physical, thermal, rheological, morphological, and others; recyclable polymers and plastics recycling environmental testing: in-laboratory simulations, outdoor exposures, and standardization of methodologies; environmental fate: end products and intermediates of biodegradation; microbiology and enzymology of polymer biodegradation; solid-waste management and public legislation specific to environmental polymers; and other related topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信