Delocalisation and Continuity in 2D: Loop \(\textrm{O}(2)\), Six-Vertex, and Random-Cluster Models

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Alexander Glazman, Piet Lammers
{"title":"Delocalisation and Continuity in 2D: Loop \\(\\textrm{O}(2)\\), Six-Vertex, and Random-Cluster Models","authors":"Alexander Glazman,&nbsp;Piet Lammers","doi":"10.1007/s00220-025-05259-9","DOIUrl":null,"url":null,"abstract":"<div><p>We prove the existence of macroscopic loops in the loop <span>\\(\\textrm{O}(2)\\)</span> model with <span>\\(\\frac{1}{2}\\le x^2\\le 1\\)</span> or, equivalently, delocalisation of the associated integer-valued Lipschitz function on the triangular lattice. This settles one side of the conjecture of Fan, Domany, and Nienhuis (1970 s–1980 s) that <span>\\(x^2 = \\frac{1}{2}\\)</span> is the critical point. We also prove delocalisation in the six-vertex model with <span>\\(0&lt;a,\\,b\\le c\\le a+b\\)</span>. This yields a new proof of continuity of the phase transition in the random-cluster and Potts models in two dimensions for <span>\\(1\\le q\\le 4\\)</span> relying neither on integrability tools (parafermionic observables, Bethe Ansatz), nor on the Russo–Seymour–Welsh theory. Our approach goes through a novel FKG property required for the non-coexistence theorem of Zhang and Sheffield, which is used to prove delocalisation all the way up to the critical point. We also use the <span>\\({\\mathbb {T}}\\)</span>-circuit argument in the case of the six-vertex model. Finally, we extend an existing renormalisation inequality in order to quantify the delocalisation as being logarithmic, in the regimes <span>\\(\\frac{1}{2}\\le x^2\\le 1\\)</span> and <span>\\(a=b\\le c\\le a+b\\)</span>. This is consistent with the conjecture that the scaling limit is the Gaussian free field.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 5","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-025-05259-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05259-9","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We prove the existence of macroscopic loops in the loop \(\textrm{O}(2)\) model with \(\frac{1}{2}\le x^2\le 1\) or, equivalently, delocalisation of the associated integer-valued Lipschitz function on the triangular lattice. This settles one side of the conjecture of Fan, Domany, and Nienhuis (1970 s–1980 s) that \(x^2 = \frac{1}{2}\) is the critical point. We also prove delocalisation in the six-vertex model with \(0<a,\,b\le c\le a+b\). This yields a new proof of continuity of the phase transition in the random-cluster and Potts models in two dimensions for \(1\le q\le 4\) relying neither on integrability tools (parafermionic observables, Bethe Ansatz), nor on the Russo–Seymour–Welsh theory. Our approach goes through a novel FKG property required for the non-coexistence theorem of Zhang and Sheffield, which is used to prove delocalisation all the way up to the critical point. We also use the \({\mathbb {T}}\)-circuit argument in the case of the six-vertex model. Finally, we extend an existing renormalisation inequality in order to quantify the delocalisation as being logarithmic, in the regimes \(\frac{1}{2}\le x^2\le 1\) and \(a=b\le c\le a+b\). This is consistent with the conjecture that the scaling limit is the Gaussian free field.

2D中的局部化和连续性:循环\(\textrm{O}(2)\),六顶点和随机聚类模型
我们证明了在具有 \(\frac{1}{2}\le x^2\le 1\) 或等价于三角形晶格上的相关整数值李普希兹函数的环路(\textrm{O}(2)\)模型中宏观环路的存在。这解决了 Fan、Domany 和 Nienhuis(1970 年代-1980 年代)关于 \(x^2 = \frac{1}{2}\) 是临界点的猜想的一面。我们还证明了具有 \(0<a,\,b\le c\le a+b\)的六顶点模型中的脱焦性。这就产生了一个新的证明,即在二(1\le q\le 4\)维的随机簇和波茨模型中,相变的连续性既不依赖于可整性工具(旁费米子可观测性、贝特安萨茨),也不依赖于鲁索-塞缪尔-韦尔什理论。我们的方法通过张(Zhang)和谢菲尔德(Sheffield)的非共存定理所需的一个新颖的 FKG 特性来证明直到临界点的脱焦性。在六顶点模型中,我们还使用了\({\mathbb {T}}\)-回路论证。最后,我们扩展了现有的重正化不等式,以便在(\(frac{1}{2}\le x^2\le 1\) 和(a=b\le c\le a+b\)情况下量化对数脱域。这与比例极限是高斯自由场的猜想是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信