Operator-Valued Twisted Araki–Woods Algebras

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
R. Rahul Kumar, Melchior Wirth
{"title":"Operator-Valued Twisted Araki–Woods Algebras","authors":"R. Rahul Kumar,&nbsp;Melchior Wirth","doi":"10.1007/s00220-025-05285-7","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce operator-valued twisted Araki–Woods algebras. These are operator-valued versions of a class of second quantization algebras that includes <i>q</i>-Gaussian and <i>q</i>-Araki–Woods algebras and also generalize Shlyakhtenko’s von Neumann algebras generated by operator-valued semicircular variables. We develop a disintegration theory that reduces the isomorphism type of operator-valued twisted Araki–Woods algebras over type <span>\\(\\textrm{I}\\)</span> factors to the scalar-valued case. Moreover, these algebras come with a natural weight, and we characterize its modular theory. We also give sufficient criteria that guarantee the factoriality of these algebras.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 5","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-025-05285-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05285-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce operator-valued twisted Araki–Woods algebras. These are operator-valued versions of a class of second quantization algebras that includes q-Gaussian and q-Araki–Woods algebras and also generalize Shlyakhtenko’s von Neumann algebras generated by operator-valued semicircular variables. We develop a disintegration theory that reduces the isomorphism type of operator-valued twisted Araki–Woods algebras over type \(\textrm{I}\) factors to the scalar-valued case. Moreover, these algebras come with a natural weight, and we characterize its modular theory. We also give sufficient criteria that guarantee the factoriality of these algebras.

算子值扭曲Araki-Woods代数
引入算子值扭曲Araki-Woods代数。它们是一类二阶量化代数的算子值版本,其中包括q-高斯代数和q-Araki-Woods代数,并且还推广了由算子值半圆变量生成的Shlyakhtenko的von Neumann代数。我们发展了一个分解理论,将算子值扭曲Araki-Woods代数在\(\textrm{I}\)型因子上的同构类型简化为标量值情况。此外,这些代数有一个自然权值,我们描述了它的模理论。我们还给出了保证这些代数的可阶乘性的充分判据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信