Deformation of the Heisenberg–Weyl algebra and the Lie superalgebra \(\mathfrak {osp}\left( {1|2} \right)\): exact solution for the quantum harmonic oscillator with a position-dependent mass

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
E. I. Jafarov, S. M. Nagiyev, J. Van der Jeugt
{"title":"Deformation of the Heisenberg–Weyl algebra and the Lie superalgebra \\(\\mathfrak {osp}\\left( {1|2} \\right)\\): exact solution for the quantum harmonic oscillator with a position-dependent mass","authors":"E. I. Jafarov,&nbsp;S. M. Nagiyev,&nbsp;J. Van der Jeugt","doi":"10.1140/epjp/s13360-025-06113-6","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a new deformation of the quantum harmonic oscillator Heisenberg–Weyl algebra with a parameter <span>\\(a&gt;-1\\)</span>. This parameter is introduced through the replacement of the homogeneous mass <span>\\(m_0\\)</span> in the definition of the momentum operator <span>\\(\\hat{p}_x\\)</span> as well as in the creation–annihilation operators <span>\\({\\hat{a}}^\\pm\\)</span> with a mass varying with position <i>x</i>. The realization of such a deformation is shown through the exact solution of the corresponding Schrödinger equation for the non-relativistic quantum harmonic oscillator within the canonical approach. The obtained analytical expression of the energy spectrum consists of an infinite number of equidistant levels, whereas the wavefunctions of the stationary states of the problem under construction are expressed through the Hermite polynomials. Then, the Heisenberg–Weyl algebra deformation is generalized to the case of the Lie superalgebra <span>\\(\\mathfrak {osp}\\left( {1|2} \\right)\\)</span>. It is shown that the realization of such a generalized superalgebra can be performed for the parabose quantum harmonic oscillator problem, the mass of which possesses a behavior completely overlapping with the position-dependent mass of the canonically deformed harmonic oscillator problem. This problem is solved exactly for both even and odd stationary states. It is shown that the energy spectrum of the deformed parabose oscillator is still equidistant; however, both even- and odd-state wavefunctions are now expressed through the Laguerre polynomials. Some basic limit relations recovering the canonical harmonic oscillator with constant mass are also discussed briefly.</p></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"140 4","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Plus","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjp/s13360-025-06113-6","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a new deformation of the quantum harmonic oscillator Heisenberg–Weyl algebra with a parameter \(a>-1\). This parameter is introduced through the replacement of the homogeneous mass \(m_0\) in the definition of the momentum operator \(\hat{p}_x\) as well as in the creation–annihilation operators \({\hat{a}}^\pm\) with a mass varying with position x. The realization of such a deformation is shown through the exact solution of the corresponding Schrödinger equation for the non-relativistic quantum harmonic oscillator within the canonical approach. The obtained analytical expression of the energy spectrum consists of an infinite number of equidistant levels, whereas the wavefunctions of the stationary states of the problem under construction are expressed through the Hermite polynomials. Then, the Heisenberg–Weyl algebra deformation is generalized to the case of the Lie superalgebra \(\mathfrak {osp}\left( {1|2} \right)\). It is shown that the realization of such a generalized superalgebra can be performed for the parabose quantum harmonic oscillator problem, the mass of which possesses a behavior completely overlapping with the position-dependent mass of the canonically deformed harmonic oscillator problem. This problem is solved exactly for both even and odd stationary states. It is shown that the energy spectrum of the deformed parabose oscillator is still equidistant; however, both even- and odd-state wavefunctions are now expressed through the Laguerre polynomials. Some basic limit relations recovering the canonical harmonic oscillator with constant mass are also discussed briefly.

求助全文
约1分钟内获得全文 求助全文
来源期刊
The European Physical Journal Plus
The European Physical Journal Plus PHYSICS, MULTIDISCIPLINARY-
CiteScore
5.40
自引率
8.80%
发文量
1150
审稿时长
4-8 weeks
期刊介绍: The aims of this peer-reviewed online journal are to distribute and archive all relevant material required to document, assess, validate and reconstruct in detail the body of knowledge in the physical and related sciences. The scope of EPJ Plus encompasses a broad landscape of fields and disciplines in the physical and related sciences - such as covered by the topical EPJ journals and with the explicit addition of geophysics, astrophysics, general relativity and cosmology, mathematical and quantum physics, classical and fluid mechanics, accelerator and medical physics, as well as physics techniques applied to any other topics, including energy, environment and cultural heritage.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信