On-site analysis of cortisol in saliva based on microchannel lateral flow assay (mLFA) on polymer lab-on-a-chip (LOC)

IF 3 4区 医学 Q3 ENGINEERING, BIOMEDICAL
V. Thiyagarajan Upaassana, Supreeth Setty, Heeyeong Jang, Sthitodhi Ghosh, Chong Ahn
{"title":"On-site analysis of cortisol in saliva based on microchannel lateral flow assay (mLFA) on polymer lab-on-a-chip (LOC)","authors":"V. Thiyagarajan Upaassana,&nbsp;Supreeth Setty,&nbsp;Heeyeong Jang,&nbsp;Sthitodhi Ghosh,&nbsp;Chong Ahn","doi":"10.1007/s10544-025-00733-6","DOIUrl":null,"url":null,"abstract":"<div><p>Unbound cortisol in saliva, detectable through non-invasive sampling, is widely recognized as a validated biomarker for the biochemical evaluation of common mental disorders such as chronic stress, depression, anxiety, and post-traumatic stress disorder (PTSD). In this work, we report a novel polymer lab-on-a-chip (LOC) for microfluidic lateral flow assay (mLFA) with on-chip dried reagents for the detection of unbound cortisol in saliva using a competitive immunoassay protocol. The new polymer microchannel lateral flow assay on lab-on-a-chip (mLFA-LOC), replicated using injection molding technology, are composed of sequentially connected microchannels for sample loading, detection antibody immobilization, flow delay, sensing spirals for test and control, and a capillary pump at the end. The competitive immunoassay of cortisol can be autonomously performed through the microchannels after sample loading of the filtered saliva, and the fluorescence signals emitted from the sensing spirals are detected and quantified by a custom-designed, portable fluorescence analyzer developed in this work. For the evaluation of cortisol assay, artificial saliva samples spiked with unbound cortisol were analyzed using mLFA-LOC and the portable analyzer. The performed competitive assay of unbound cortisol showed a limit of detection (LoD) of 1.8 ng/mL and an inter-chip coefficient of variation (CV) of 4.0%, which covers the clinical range for on-site unbound salivary cortisol analysis. The newly developed mLFA-LOC platform certainly works successfully for the rapid on-site sampling and analysis of salivary biomarkers.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"27 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10544-025-00733-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Microdevices","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10544-025-00733-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Unbound cortisol in saliva, detectable through non-invasive sampling, is widely recognized as a validated biomarker for the biochemical evaluation of common mental disorders such as chronic stress, depression, anxiety, and post-traumatic stress disorder (PTSD). In this work, we report a novel polymer lab-on-a-chip (LOC) for microfluidic lateral flow assay (mLFA) with on-chip dried reagents for the detection of unbound cortisol in saliva using a competitive immunoassay protocol. The new polymer microchannel lateral flow assay on lab-on-a-chip (mLFA-LOC), replicated using injection molding technology, are composed of sequentially connected microchannels for sample loading, detection antibody immobilization, flow delay, sensing spirals for test and control, and a capillary pump at the end. The competitive immunoassay of cortisol can be autonomously performed through the microchannels after sample loading of the filtered saliva, and the fluorescence signals emitted from the sensing spirals are detected and quantified by a custom-designed, portable fluorescence analyzer developed in this work. For the evaluation of cortisol assay, artificial saliva samples spiked with unbound cortisol were analyzed using mLFA-LOC and the portable analyzer. The performed competitive assay of unbound cortisol showed a limit of detection (LoD) of 1.8 ng/mL and an inter-chip coefficient of variation (CV) of 4.0%, which covers the clinical range for on-site unbound salivary cortisol analysis. The newly developed mLFA-LOC platform certainly works successfully for the rapid on-site sampling and analysis of salivary biomarkers.

Graphical Abstract

基于聚合物芯片实验室(LOC)微通道横向流动测定(mLFA)的唾液皮质醇现场分析
唾液中未结合的皮质醇,通过非侵入性采样检测,被广泛认为是一种有效的生物标志物,用于常见精神障碍的生化评估,如慢性应激、抑郁、焦虑和创伤后应激障碍(PTSD)。在这项工作中,我们报告了一种新型的聚合物芯片实验室(LOC),用于微流控侧流分析(mLFA),用芯片上干燥的试剂检测唾液中未结合的皮质醇,使用竞争性免疫分析方案。新型聚合物微通道横向流动实验采用注射成型技术在芯片实验室(mLFA-LOC)上复制,由顺序连接的微通道组成,用于样品装载、检测抗体固定、流动延迟、检测螺旋和最后的毛细管泵。在过滤后的唾液上样后,皮质醇的竞争性免疫分析可以通过微通道自主进行,并且由本工作开发的定制设计的便携式荧光分析仪检测和定量从传感螺旋发出的荧光信号。为了评估皮质醇测定,使用mLFA-LOC和便携式分析仪分析加入未结合皮质醇的人工唾液样本。非结合皮质醇竞争性分析的检出限(LoD)为1.8 ng/mL,芯片间变异系数(CV)为4.0%,覆盖了现场非结合唾液皮质醇分析的临床范围。新开发的mLFA-LOC平台对于唾液生物标志物的快速现场采样和分析当然是成功的。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedical Microdevices
Biomedical Microdevices 工程技术-工程:生物医学
CiteScore
6.90
自引率
3.60%
发文量
32
审稿时长
6 months
期刊介绍: Biomedical Microdevices: BioMEMS and Biomedical Nanotechnology is an interdisciplinary periodical devoted to all aspects of research in the medical diagnostic and therapeutic applications of Micro-Electro-Mechanical Systems (BioMEMS) and nanotechnology for medicine and biology. General subjects of interest include the design, characterization, testing, modeling and clinical validation of microfabricated systems, and their integration on-chip and in larger functional units. The specific interests of the Journal include systems for neural stimulation and recording, bioseparation technologies such as nanofilters and electrophoretic equipment, miniaturized analytic and DNA identification systems, biosensors, and micro/nanotechnologies for cell and tissue research, tissue engineering, cell transplantation, and the controlled release of drugs and biological molecules. Contributions reporting on fundamental and applied investigations of the material science, biochemistry, and physics of biomedical microdevices and nanotechnology are encouraged. A non-exhaustive list of fields of interest includes: nanoparticle synthesis, characterization, and validation of therapeutic or imaging efficacy in animal models; biocompatibility; biochemical modification of microfabricated devices, with reference to non-specific protein adsorption, and the active immobilization and patterning of proteins on micro/nanofabricated surfaces; the dynamics of fluids in micro-and-nano-fabricated channels; the electromechanical and structural response of micro/nanofabricated systems; the interactions of microdevices with cells and tissues, including biocompatibility and biodegradation studies; variations in the characteristics of the systems as a function of the micro/nanofabrication parameters.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信