Modification of a bioabsorbable carbon electrode on silk-fibroin carriers: setting the composition and adjustment of the working potential†

IF 3.5 Q2 CHEMISTRY, ANALYTICAL
Kevin Alexander Janus, Madita Zach, Stefan Achtsnicht, Aleksander Drinic, Alexander Kopp, Michael Keusgen and Michael Josef Schöning
{"title":"Modification of a bioabsorbable carbon electrode on silk-fibroin carriers: setting the composition and adjustment of the working potential†","authors":"Kevin Alexander Janus, Madita Zach, Stefan Achtsnicht, Aleksander Drinic, Alexander Kopp, Michael Keusgen and Michael Josef Schöning","doi":"10.1039/D4SD00371C","DOIUrl":null,"url":null,"abstract":"<p >In this work, different surface treatment and modification procedures (KCl, Na<small><sub>2</sub></small>CO<small><sub>3</sub></small>, H<small><sub>2</sub></small>O<small><sub>2</sub></small>, O<small><sub>2</sub></small> plasma, multi-walled carbon nanotubes (MWCNTs)) are applied to a screen-printed carbon-based electrode on bioabsorbable silk-fibroin, aiming to reduce the applied working potential in operation. The screen-printed carbon electrode houses the enzyme glucose oxidase for glucose monitoring, and is encapsulated by the biocompatible material Ecoflex. The working electrode is characterized amperometrically at different working potentials (0.6 to 1.2 V <em>vs.</em> the Ag/AgCl reference electrode) at physiological glucose concentrations ranging from 0.5 to 10 mM. The surface morphology of the electrode is analyzed utilizing scanning electron microscopy and contact angle measurements. Addition of 2 wt% MWCNTs to the carbon screen-printing paste allowed the reduction of the applied working potential from 1.2 to 0.8 V, resulting in a mean glucose sensitivity of 2.5 ± 0.6 μA cm<small><sup>−2</sup></small> mM<small><sup>−1</sup></small>. Moreover, the bioabsorbability (<em>i.e.</em>, the degradation behavior) of the different surface-treated carbon electrodes on silk-fibroin is studied over several months using the enzyme protease XIV from <em>Streptomyces griseus</em>.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 4","pages":" 353-362"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/sd/d4sd00371c?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors & diagnostics","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/sd/d4sd00371c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, different surface treatment and modification procedures (KCl, Na2CO3, H2O2, O2 plasma, multi-walled carbon nanotubes (MWCNTs)) are applied to a screen-printed carbon-based electrode on bioabsorbable silk-fibroin, aiming to reduce the applied working potential in operation. The screen-printed carbon electrode houses the enzyme glucose oxidase for glucose monitoring, and is encapsulated by the biocompatible material Ecoflex. The working electrode is characterized amperometrically at different working potentials (0.6 to 1.2 V vs. the Ag/AgCl reference electrode) at physiological glucose concentrations ranging from 0.5 to 10 mM. The surface morphology of the electrode is analyzed utilizing scanning electron microscopy and contact angle measurements. Addition of 2 wt% MWCNTs to the carbon screen-printing paste allowed the reduction of the applied working potential from 1.2 to 0.8 V, resulting in a mean glucose sensitivity of 2.5 ± 0.6 μA cm−2 mM−1. Moreover, the bioabsorbability (i.e., the degradation behavior) of the different surface-treated carbon electrodes on silk-fibroin is studied over several months using the enzyme protease XIV from Streptomyces griseus.

Abstract Image

丝素载体上生物可吸收碳电极的修饰:工作电位†的组成和调整
本研究将不同的表面处理和修饰工艺(KCl、Na2CO3、H2O2、O2等离子体、多壁碳纳米管(MWCNTs))应用于生物可吸收丝素丝网印刷碳基电极上,旨在降低其运行中的应用工作电位。丝网印刷的碳电极容纳葡萄糖氧化酶用于葡萄糖监测,并由生物相容性材料Ecoflex封装。在生理葡萄糖浓度范围为0.5至10 mM时,对工作电极在不同工作电位(0.6至1.2 V vs. Ag/AgCl参比电极)下的安培特性进行了表征。利用扫描电子显微镜和接触角测量分析了电极的表面形貌。在碳丝网印刷浆料中加入2wt %的MWCNTs,使所施加的工作电位从1.2 V降低到0.8 V,导致平均葡萄糖敏感性为2.5±0.6 μA cm−2 mM−1。此外,使用来自灰色链霉菌的蛋白酶XIV,在几个月的时间里研究了不同表面处理的碳电极在丝素蛋白上的生物吸收性(即降解行为)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信