{"title":"Cyclically covering subspaces of Fqn","authors":"Meng Sun, Changli Ma, Liwei Zeng","doi":"10.1016/j.ffa.2025.102625","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>q</em> be a prime power, <em>n</em> be a positive integer, and <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> be the <em>n</em>-dimensional row vector space over finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. We say a subspace <em>U</em> of <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> is cyclically covering if the union of the cyclic shifts of <em>U</em> is equal to <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span>. Recently, the largest possible codimension of a cyclically covering subspace of <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span>, denoted by <span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span>, has attracted the attention of many scholars. In this paper, we introduce cyclically covering subspaces of finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span>. By virtue of the theory of direct sum decomposition of finite fields, we describe a method for constructing cyclically covering subspaces of <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span>, and determine the value of <span><math><msub><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> for some special <em>n</em>. In particular, we prove <span><math><msub><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mn>21</mn><mo>)</mo><mo>=</mo><mn>4</mn></math></span>. Finally, several lower bounds of <span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> are given when <span><math><mo>(</mo><mi>q</mi><mo>,</mo><mi>n</mi><mo>)</mo><mo>=</mo><mn>1</mn></math></span>, which generalizes results of the existing results in <span><span>[2]</span></span>.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"106 ","pages":"Article 102625"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579725000553","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let q be a prime power, n be a positive integer, and be the n-dimensional row vector space over finite field . We say a subspace U of is cyclically covering if the union of the cyclic shifts of U is equal to . Recently, the largest possible codimension of a cyclically covering subspace of , denoted by , has attracted the attention of many scholars. In this paper, we introduce cyclically covering subspaces of finite field . By virtue of the theory of direct sum decomposition of finite fields, we describe a method for constructing cyclically covering subspaces of , and determine the value of for some special n. In particular, we prove . Finally, several lower bounds of are given when , which generalizes results of the existing results in [2].
期刊介绍:
Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering.
For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods.
The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.