Predicting the energy, economic, and environmental performance of next-generation photovoltaic technologies in residential buildings

IF 10.1 1区 工程技术 Q1 ENERGY & FUELS
Ju Won Lim , Hyeonsoo Kim
{"title":"Predicting the energy, economic, and environmental performance of next-generation photovoltaic technologies in residential buildings","authors":"Ju Won Lim ,&nbsp;Hyeonsoo Kim","doi":"10.1016/j.apenergy.2025.125895","DOIUrl":null,"url":null,"abstract":"<div><div>While silicon-cell photovoltaics have long dominated the solar power industry, emerging PV technologies now challenge their dominance through improvements in efficiency, cost-effectiveness, and sustainability. In this study, we compare three emerging solar cell materials—perovskite, chalcogenide, and organic—with conventional silicon-cell PV. We evaluate four different rooftop solar panels installed on a typical single-family residential building in Detroit, MI, examining their energy, economic, and environmental performance to determine which PV technology is best positioned to support the implementation of NZEBs by 2050. A five-parameter logistic (5PL) function was used to evaluate solar technologies by investigating the efficiency of PV devices and total investment costs over time. The results indicate that perovskite has the potential to outperform silicon-cell PV in terms of energy (energy reduction rate of 30.66 % for perovskite and 25.51 % for silicon-cell PV in 2050) and economic perspectives (cost savings of $443.71 USD/year for perovskite and $369.26 USD/year for silicon-cell PV in 2050), owing to its remarkable light absorption capabilities and low-cost manufacturing process. However, the high embedded CO<sub>2</sub> emissions of perovskite solar cells (1020 gCO<sub>2</sub>/kWh) have resulted in this technology exhibiting the longest environmental payback period (i.e., 6.81 years in 2050) among the four solar cell materials covered in this study. Meanwhile, the performance of chalcogenide PV was found to be the best from an environmental standpoint. In conclusion, the significance of this paper lies in helping building engineers and PV technicians predict which solar cell materials have the market potential to replace the dominance of silicon-cell PV and become the “system of the future” in the solar power industry.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"390 ","pages":"Article 125895"},"PeriodicalIF":10.1000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261925006257","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

While silicon-cell photovoltaics have long dominated the solar power industry, emerging PV technologies now challenge their dominance through improvements in efficiency, cost-effectiveness, and sustainability. In this study, we compare three emerging solar cell materials—perovskite, chalcogenide, and organic—with conventional silicon-cell PV. We evaluate four different rooftop solar panels installed on a typical single-family residential building in Detroit, MI, examining their energy, economic, and environmental performance to determine which PV technology is best positioned to support the implementation of NZEBs by 2050. A five-parameter logistic (5PL) function was used to evaluate solar technologies by investigating the efficiency of PV devices and total investment costs over time. The results indicate that perovskite has the potential to outperform silicon-cell PV in terms of energy (energy reduction rate of 30.66 % for perovskite and 25.51 % for silicon-cell PV in 2050) and economic perspectives (cost savings of $443.71 USD/year for perovskite and $369.26 USD/year for silicon-cell PV in 2050), owing to its remarkable light absorption capabilities and low-cost manufacturing process. However, the high embedded CO2 emissions of perovskite solar cells (1020 gCO2/kWh) have resulted in this technology exhibiting the longest environmental payback period (i.e., 6.81 years in 2050) among the four solar cell materials covered in this study. Meanwhile, the performance of chalcogenide PV was found to be the best from an environmental standpoint. In conclusion, the significance of this paper lies in helping building engineers and PV technicians predict which solar cell materials have the market potential to replace the dominance of silicon-cell PV and become the “system of the future” in the solar power industry.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Energy
Applied Energy 工程技术-工程:化工
CiteScore
21.20
自引率
10.70%
发文量
1830
审稿时长
41 days
期刊介绍: Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信