One-step synthesis of trace Ni-coupled Cu/Cu2O nanoparticles enables high-efficiency ammonia synthesis and zinc-nitrate batteries

IF 5.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ping Wang , Xiaoxia He , Moyu Liao , Xin Zeng , Qiling Duan , Zhongxu Dai
{"title":"One-step synthesis of trace Ni-coupled Cu/Cu2O nanoparticles enables high-efficiency ammonia synthesis and zinc-nitrate batteries","authors":"Ping Wang ,&nbsp;Xiaoxia He ,&nbsp;Moyu Liao ,&nbsp;Xin Zeng ,&nbsp;Qiling Duan ,&nbsp;Zhongxu Dai","doi":"10.1016/j.materresbull.2025.113472","DOIUrl":null,"url":null,"abstract":"<div><div>Converting nitrate to ammonia offers an efficient means of degrading pollutants and producing valuable industrial products. This study strategically tuned the Ni content in precursors to directly elucidate the Ni-Cu synergy through Faradaic efficiency (FE) quantification. Cu6Ni1-BMC, synthesized via a one-step wet-chemical method at room temperature, delivered a maximum NH<sub>3</sub> yield rate of 39.7 mg cm<sup>−2</sup> h<sup>−1</sup> (9.93 mg mg<sub>cat</sub><sup>−1</sup> h<sup>−1</sup>) at -1.0 V <em>vs.</em> RHE, with an FE of 95 %. The current density of NO<sub>3</sub><sup>−</sup>RR stabilized at 400 mA cm<sup>−2</sup> after 15 h of constant-potential reduction at -0.8 V <em>vs.</em> RHE. Concurrent enhancement of catalytic performance and reduction in oxidation state was observed during catalyst activation. In addition, the Zn-NO<sub>3</sub><sup>−</sup> battery based on Cu6Ni1-BMC electrode exhibits a power density of 9.12 mW cm<sup>−2</sup> and a stable ability to maintain energy.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"189 ","pages":"Article 113472"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540825001801","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Converting nitrate to ammonia offers an efficient means of degrading pollutants and producing valuable industrial products. This study strategically tuned the Ni content in precursors to directly elucidate the Ni-Cu synergy through Faradaic efficiency (FE) quantification. Cu6Ni1-BMC, synthesized via a one-step wet-chemical method at room temperature, delivered a maximum NH3 yield rate of 39.7 mg cm−2 h−1 (9.93 mg mgcat−1 h−1) at -1.0 V vs. RHE, with an FE of 95 %. The current density of NO3RR stabilized at 400 mA cm−2 after 15 h of constant-potential reduction at -0.8 V vs. RHE. Concurrent enhancement of catalytic performance and reduction in oxidation state was observed during catalyst activation. In addition, the Zn-NO3 battery based on Cu6Ni1-BMC electrode exhibits a power density of 9.12 mW cm−2 and a stable ability to maintain energy.

Abstract Image

一步合成微量镍偶联Cu/Cu2O纳米颗粒,实现高效氨合成和硝酸锌电池
将硝酸盐转化为氨是一种有效的降解污染物和生产有价值的工业产品的方法。本研究战略性地调整了前驱体中的Ni含量,通过法拉第效率(FE)定量直接阐明了Ni- cu的协同作用。室温下一步湿化学法合成Cu6Ni1-BMC,在-1.0 V条件下NH3的最大产率为39.7 mg cm−2 h−1 (9.93 mg mgcat−1 h−1),FE为95%。与RHE相比,在-0.8 V恒电位还原15 h后,NO3−RR的电流密度稳定在400 mA cm−2。在催化剂活化过程中,观察到催化性能的增强和氧化态的降低同时发生。此外,基于Cu6Ni1-BMC电极的Zn-NO3−电池具有9.12 mW cm−2的功率密度和稳定的能量维持能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Research Bulletin
Materials Research Bulletin 工程技术-材料科学:综合
CiteScore
9.80
自引率
5.60%
发文量
372
审稿时长
42 days
期刊介绍: Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信