{"title":"Chemogenetic ablation and regeneration of arterial valve in zebrafish","authors":"Zongyi Duan, Hao Cao, Mengting Xu, Wenping Huang, Yuanhui Peng, Zhenya Shen, Shijun Hu, Yanchao Han","doi":"10.1016/j.bbrc.2025.151786","DOIUrl":null,"url":null,"abstract":"<div><div>Aortic valve diseases are prevalent and severe cardiovascular conditions with limited treatment options beyond surgical intervention. The ability to regenerate aortic valves would revolutionize the management of these diseases. Utilizing the zebrafish model, which possesses remarkable regenerative capacities, we developed a chemogenetic arterial valve ablation model using a zebrafish-codon optimized nitroreductase. We found that arterial valve ablation led to blood regurgitation and impaired cardiac function, which are commonly associated with aortic valve diseases. Following ablation, zebrafish arterial valve could fully regenerate and restore valvular and cardiac function. Moreover, suppression of blood flow significantly impedes valve regeneration, indicating the importance of hemodynamic forces in this process. Our research has successfully established a robust aortic valve injury model to study the cellular and molecular mechanisms underlying its regeneration process which will facilitate the development of innovative therapeutic strategies tailored for aortic valve diseases.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"762 ","pages":"Article 151786"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X25005005","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aortic valve diseases are prevalent and severe cardiovascular conditions with limited treatment options beyond surgical intervention. The ability to regenerate aortic valves would revolutionize the management of these diseases. Utilizing the zebrafish model, which possesses remarkable regenerative capacities, we developed a chemogenetic arterial valve ablation model using a zebrafish-codon optimized nitroreductase. We found that arterial valve ablation led to blood regurgitation and impaired cardiac function, which are commonly associated with aortic valve diseases. Following ablation, zebrafish arterial valve could fully regenerate and restore valvular and cardiac function. Moreover, suppression of blood flow significantly impedes valve regeneration, indicating the importance of hemodynamic forces in this process. Our research has successfully established a robust aortic valve injury model to study the cellular and molecular mechanisms underlying its regeneration process which will facilitate the development of innovative therapeutic strategies tailored for aortic valve diseases.
期刊介绍:
Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology
; molecular biology; neurobiology; plant biology and proteomics