The evolutionary landscape of modern-day replicases and archaeo-eukaryotic primases may have giant viral interventions

IF 2.8 3区 医学 Q3 VIROLOGY
Shailesh B. Lad , Soumyadeep Mandal , Kiran Kondabagil
{"title":"The evolutionary landscape of modern-day replicases and archaeo-eukaryotic primases may have giant viral interventions","authors":"Shailesh B. Lad ,&nbsp;Soumyadeep Mandal ,&nbsp;Kiran Kondabagil","doi":"10.1016/j.virol.2025.110524","DOIUrl":null,"url":null,"abstract":"<div><div>The viruses from the phylum <em>Nucleocytoviricota</em> have been a central part of the investigation to understand the evolution of viruses because of their atypically large particle size and large DNA genome encoding ORFs for protein translation, metabolism, and DNA replication and repair. <em>Acanthamoeba polyphaga</em> mimivirus (APMV), the founding member of the phylum, encodes a DNA-repair multifunctional PrimPol enzyme belonging to the archaeo-eukaryotic primase (AEP) superfamily. AEPs are enzymes present in all domains of life forms and viruses, and their versatile nature has been hypothesized to have aided in genomic replication and repair during evolution. The broad substrate specificity of AEPs allows them to act as primase, polymerase, and translesion synthesis polymerase (TLS). This multi-operational mode makes them a potential candidate for a primordial enzyme that could have been a part of the still inefficient ancient replication machinery. In this article, using the available sequence, biochemical, and structural information of AEPs, we explore the potential origins of modern-day replicases. In this context, we propose that AEPs, specifically PrimPols, have been central to the inception of modern-day replication machinery. Using APMV PrimPol as a representative candidate, we propose a model in which the parallel evolution of naked DNA elements, early viruses, cellular organisms, and the replication machinery might have occurred.</div></div>","PeriodicalId":23666,"journal":{"name":"Virology","volume":"607 ","pages":"Article 110524"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042682225001370","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The viruses from the phylum Nucleocytoviricota have been a central part of the investigation to understand the evolution of viruses because of their atypically large particle size and large DNA genome encoding ORFs for protein translation, metabolism, and DNA replication and repair. Acanthamoeba polyphaga mimivirus (APMV), the founding member of the phylum, encodes a DNA-repair multifunctional PrimPol enzyme belonging to the archaeo-eukaryotic primase (AEP) superfamily. AEPs are enzymes present in all domains of life forms and viruses, and their versatile nature has been hypothesized to have aided in genomic replication and repair during evolution. The broad substrate specificity of AEPs allows them to act as primase, polymerase, and translesion synthesis polymerase (TLS). This multi-operational mode makes them a potential candidate for a primordial enzyme that could have been a part of the still inefficient ancient replication machinery. In this article, using the available sequence, biochemical, and structural information of AEPs, we explore the potential origins of modern-day replicases. In this context, we propose that AEPs, specifically PrimPols, have been central to the inception of modern-day replication machinery. Using APMV PrimPol as a representative candidate, we propose a model in which the parallel evolution of naked DNA elements, early viruses, cellular organisms, and the replication machinery might have occurred.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Virology
Virology 医学-病毒学
CiteScore
6.00
自引率
0.00%
发文量
157
审稿时长
50 days
期刊介绍: Launched in 1955, Virology is a broad and inclusive journal that welcomes submissions on all aspects of virology including plant, animal, microbial and human viruses. The journal publishes basic research as well as pre-clinical and clinical studies of vaccines, anti-viral drugs and their development, anti-viral therapies, and computational studies of virus infections. Any submission that is of broad interest to the community of virologists/vaccinologists and reporting scientifically accurate and valuable research will be considered for publication, including negative findings and multidisciplinary work.Virology is open to reviews, research manuscripts, short communication, registered reports as well as follow-up manuscripts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信