Unveiling promotion effects of Ce doping in La0.6Ca0.4Co0.2Fe0.8O3-δ as an efficient cathode for solid oxide fuel cells

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Shuai He , Zhishan Li , Xiaowei Hu , Qingxun Li , Xiwen Song , Yue Wang , Xuerui Zhang , Haijun Zhong , Yunfeng Tian , San Ping Jiang
{"title":"Unveiling promotion effects of Ce doping in La0.6Ca0.4Co0.2Fe0.8O3-δ as an efficient cathode for solid oxide fuel cells","authors":"Shuai He ,&nbsp;Zhishan Li ,&nbsp;Xiaowei Hu ,&nbsp;Qingxun Li ,&nbsp;Xiwen Song ,&nbsp;Yue Wang ,&nbsp;Xuerui Zhang ,&nbsp;Haijun Zhong ,&nbsp;Yunfeng Tian ,&nbsp;San Ping Jiang","doi":"10.1016/j.jpowsour.2025.236977","DOIUrl":null,"url":null,"abstract":"<div><div>Perovskite La<sub>0.6</sub>Sr<sub>0.4</sub>Co<sub>0.2</sub>Fe<sub>0.8</sub>O<sub>3-δ</sub> (LSCF) is to date the most intensively studied high-performance cathode material for solid oxide fuel cells (SOFCs), but strontium segregation at elevated temperatures critically impairs the activity and longevity of LSCF cathode. By substituting Sr with Ca, i.e. La<sub>0.6</sub>Ca<sub>0.4</sub>Co<sub>0.2</sub>Fe<sub>0.8</sub>O<sub>3-δ</sub> (LCCF), the stability of the perovskite can be reinforced, however, at the cost of reduced catalytic activity. Herein, we adopt an effective A-site Ce doping strategy to modify the structure and chemistry of LCCF and therefore to boost its electrochemical performance, i.e. La<sub>0.6</sub>Ca<sub>0.4-x</sub>Ce<sub>x</sub>Co<sub>0.2</sub>Fe<sub>0.8</sub>O<sub>3-δ</sub> (Ce-LCCF<em>x</em>, x = 0.05–0.2). The results reveal that replacing Ca<sup>2+</sup> with Ce<sup>4+</sup> notably alters the oxygen vacancies concentration, Fe<sup>4+</sup>/Fe<sup>3+</sup> and Co<sup>4+</sup>/Co<sup>3+</sup> proportions in the perovskite. As a result, the thermal expansion coefficient of LCCF is drastically lowered to 12.6 × 10<sup>−6</sup> K<sup>−1</sup> upon x = 0.15 in Ce-LCCF<em>x</em>. Moreover, the single cell loaded with Ce-LCCF15 cathode demonstrates a superior maximum power density of 1.26 W cm<sup>−2</sup> at 750 °C in H<sub>2</sub>. Interestingly, microstructure analysis suggests that abundant CeO<sub><em>x</em></sub> nanoparticles are exsolved <em>in situ</em> from the Ce-LCCF15 surfaces due to cathodic current polarization. The present study contributes to the understanding of the role of dopants in promoting the catalytic properties of cathode materials for SOFCs.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"642 ","pages":"Article 236977"},"PeriodicalIF":8.1000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775325008134","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Perovskite La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) is to date the most intensively studied high-performance cathode material for solid oxide fuel cells (SOFCs), but strontium segregation at elevated temperatures critically impairs the activity and longevity of LSCF cathode. By substituting Sr with Ca, i.e. La0.6Ca0.4Co0.2Fe0.8O3-δ (LCCF), the stability of the perovskite can be reinforced, however, at the cost of reduced catalytic activity. Herein, we adopt an effective A-site Ce doping strategy to modify the structure and chemistry of LCCF and therefore to boost its electrochemical performance, i.e. La0.6Ca0.4-xCexCo0.2Fe0.8O3-δ (Ce-LCCFx, x = 0.05–0.2). The results reveal that replacing Ca2+ with Ce4+ notably alters the oxygen vacancies concentration, Fe4+/Fe3+ and Co4+/Co3+ proportions in the perovskite. As a result, the thermal expansion coefficient of LCCF is drastically lowered to 12.6 × 10−6 K−1 upon x = 0.15 in Ce-LCCFx. Moreover, the single cell loaded with Ce-LCCF15 cathode demonstrates a superior maximum power density of 1.26 W cm−2 at 750 °C in H2. Interestingly, microstructure analysis suggests that abundant CeOx nanoparticles are exsolved in situ from the Ce-LCCF15 surfaces due to cathodic current polarization. The present study contributes to the understanding of the role of dopants in promoting the catalytic properties of cathode materials for SOFCs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信