Exploring quantum neural networks for binary classification on MNIST dataset: A swap test approach

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Kehan Chen, Jiaqi Liu, Fei Yan
{"title":"Exploring quantum neural networks for binary classification on MNIST dataset: A swap test approach","authors":"Kehan Chen,&nbsp;Jiaqi Liu,&nbsp;Fei Yan","doi":"10.1016/j.neunet.2025.107442","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we propose a novel modularized Quantum Neural Network (mQNN) model tailored to address the binary classification problem on the MNIST dataset. The mQNN organizes input information using quantum images and trainable quantum parameters encoded in superposition states. Leveraging quantum parallelism, the model efficiently processes inner product calculations of quantum neurons via the swap test, achieving constant complexity. To enhance the expressive capacity of the mQNN, nonlinear transformations, specifically quantum versions of activation functions, are integrated into the quantum network. The mQNN’s circuits are constructed from flexible quantum modules, allowing the model to adapt its structure based on varying input data types and scales for optimal performance. Furthermore, rigorous mathematical derivations are employed to validate the quantum state evolution during computation within a quantum neuron. Testing on the Pennylane platform simulates the quantum environment and confirms the mQNN’s effectiveness on the MNIST dataset. These findings highlight the potential of quantum computing in advancing image classification tasks.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"188 ","pages":"Article 107442"},"PeriodicalIF":6.0000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025003211","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we propose a novel modularized Quantum Neural Network (mQNN) model tailored to address the binary classification problem on the MNIST dataset. The mQNN organizes input information using quantum images and trainable quantum parameters encoded in superposition states. Leveraging quantum parallelism, the model efficiently processes inner product calculations of quantum neurons via the swap test, achieving constant complexity. To enhance the expressive capacity of the mQNN, nonlinear transformations, specifically quantum versions of activation functions, are integrated into the quantum network. The mQNN’s circuits are constructed from flexible quantum modules, allowing the model to adapt its structure based on varying input data types and scales for optimal performance. Furthermore, rigorous mathematical derivations are employed to validate the quantum state evolution during computation within a quantum neuron. Testing on the Pennylane platform simulates the quantum environment and confirms the mQNN’s effectiveness on the MNIST dataset. These findings highlight the potential of quantum computing in advancing image classification tasks.

Abstract Image

在MNIST数据集上探索量子神经网络的二元分类:交换测试方法
在这项研究中,我们提出了一种新的模块化量子神经网络(mQNN)模型,专门用于解决MNIST数据集上的二进制分类问题。mQNN使用量子图像和在叠加状态中编码的可训练量子参数来组织输入信息。该模型利用量子并行性,通过交换测试有效地处理量子神经元的内积计算,达到恒定的复杂度。为了增强mQNN的表达能力,将非线性变换,特别是量子版本的激活函数集成到量子网络中。mQNN的电路由灵活的量子模块构成,允许模型根据不同的输入数据类型和规模调整其结构,以获得最佳性能。此外,采用严格的数学推导来验证量子神经元计算过程中的量子态演化。Pennylane平台上的测试模拟了量子环境,并证实了mQNN在MNIST数据集上的有效性。这些发现突出了量子计算在推进图像分类任务方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信