Revolutionary advancements in carbon dioxide valorization via metal-organic framework-based strategies

Sheraz Ahmed , Muhammad Kashif Khan , Jaehoon Kim
{"title":"Revolutionary advancements in carbon dioxide valorization via metal-organic framework-based strategies","authors":"Sheraz Ahmed ,&nbsp;Muhammad Kashif Khan ,&nbsp;Jaehoon Kim","doi":"10.1016/j.ccst.2025.100405","DOIUrl":null,"url":null,"abstract":"<div><div>The conversion of CO<sub>2</sub> to value-added chemicals garners considerable attention because it produces renewable hydrocarbon fuels for use in the chemical industry and simultaneously reduces the atmospheric CO<sub>2</sub> concentration to mitigate the effects of global warming. Recently, researchers attempted to produce energy and chemicals via the electro-, thermo-, and photocatalytic conversion of CO<sub>2</sub> to realize sustainability and carbon neutrality. However, owing to the high thermodynamic stability of CO<sub>2</sub>, these approaches are not yet ready for implementation in large-scale applications owing to their insufficient activities and selectivities and the stabilities toward resulting hydrocarbons. Therefore, more effective catalysts should be designed to transform CO<sub>2</sub> into various compounds. Porous crystalline frameworks, such as metal-organic frameworks (MOFs), are promising for use in catalytic CO<sub>2</sub> conversion, owing to their strong CO<sub>2</sub> adsorption capacities, high surface areas, high porosity and chemical compositions, and adjustable active sites. Here, we present the structure-activity interactions that may direct the development of efficient catalysts and provide an overview of the recent studies regarding MOF-based materials for use in electro-, thermo-, and photocatalytic CO<sub>2</sub> conversion and integrated CO<sub>2</sub> technologies, including photoelectrocatalytic and electro- and photothermal CO<sub>2</sub> reduction.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"15 ","pages":"Article 100405"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656825000454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The conversion of CO2 to value-added chemicals garners considerable attention because it produces renewable hydrocarbon fuels for use in the chemical industry and simultaneously reduces the atmospheric CO2 concentration to mitigate the effects of global warming. Recently, researchers attempted to produce energy and chemicals via the electro-, thermo-, and photocatalytic conversion of CO2 to realize sustainability and carbon neutrality. However, owing to the high thermodynamic stability of CO2, these approaches are not yet ready for implementation in large-scale applications owing to their insufficient activities and selectivities and the stabilities toward resulting hydrocarbons. Therefore, more effective catalysts should be designed to transform CO2 into various compounds. Porous crystalline frameworks, such as metal-organic frameworks (MOFs), are promising for use in catalytic CO2 conversion, owing to their strong CO2 adsorption capacities, high surface areas, high porosity and chemical compositions, and adjustable active sites. Here, we present the structure-activity interactions that may direct the development of efficient catalysts and provide an overview of the recent studies regarding MOF-based materials for use in electro-, thermo-, and photocatalytic CO2 conversion and integrated CO2 technologies, including photoelectrocatalytic and electro- and photothermal CO2 reduction.

Abstract Image

基于金属有机框架的二氧化碳增值策略的革命性进展
将二氧化碳转化为增值化学品引起了相当大的关注,因为它可以生产用于化学工业的可再生碳氢化合物燃料,同时降低大气中的二氧化碳浓度,以减轻全球变暖的影响。近年来,研究人员试图通过电、热、光催化转化二氧化碳来生产能源和化学品,以实现可持续性和碳中和。然而,由于二氧化碳具有很高的热力学稳定性,这些方法的活性和选择性不足,对生成的碳氢化合物的稳定性也不高,因此尚未准备好大规模应用。因此,应该设计更有效的催化剂,将二氧化碳转化为各种化合物。多孔晶体框架,如金属有机框架(mof),由于其强大的CO2吸附能力,高表面积,高孔隙率和化学成分,以及可调节的活性位点,在催化CO2转化中有很好的应用前景。在这里,我们介绍了结构-活性相互作用,可以指导高效催化剂的开发,并概述了最近关于mof基材料用于电、热、光催化CO2转化和集成CO2技术的研究,包括光电催化、电、光热CO2还原。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信