Digestate derived porous biochar through thermochemical nitrogen self-doping as an efficient cathode catalyst for microbial fuel cells

IF 9 1区 工程技术 Q1 ENERGY & FUELS
Shiteng Tan , Zhenghui Zhao , Kai Zhang , Bingdong Zhang , Qianqian Yin , Yue Zhang , Ruikun Wang
{"title":"Digestate derived porous biochar through thermochemical nitrogen self-doping as an efficient cathode catalyst for microbial fuel cells","authors":"Shiteng Tan ,&nbsp;Zhenghui Zhao ,&nbsp;Kai Zhang ,&nbsp;Bingdong Zhang ,&nbsp;Qianqian Yin ,&nbsp;Yue Zhang ,&nbsp;Ruikun Wang","doi":"10.1016/j.renene.2025.123033","DOIUrl":null,"url":null,"abstract":"<div><div>Microbial fuel cell (MFC) is a promising technology for sustainable energy production using renewable resources. The development of low-cost and efficient cathode catalysts is an effective way to promote the practical application of MFC. This study proposes a hydrothermal process combined with pyrolysis activation method to convert digestate into nitrogen-rich porous biochar catalysts. The nitrogen in the raw material is effectively embedded into the carbon skeleton during the hydrothermal process, increasing the number of active sites. The three-dimensional porous structure of the material promotes the transport and diffusion of reactants in the catalyst. The results show that the catalyst (HT-PC-KOH) with hydrothermal followed by KOH activation had the highest nitrogen retention rate and excellent pore structure. The maximum power density of the MFC loaded with HT-PC-KOH is 1814 mW/m<sup>2</sup>, which represents 84 % of the power density of Pt/C. This work provides a new method for converting biomass into an oxygen reduction catalyst and makes a significant contribution to the efficient production of renewable energy from MFC.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"247 ","pages":"Article 123033"},"PeriodicalIF":9.0000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148125006950","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Microbial fuel cell (MFC) is a promising technology for sustainable energy production using renewable resources. The development of low-cost and efficient cathode catalysts is an effective way to promote the practical application of MFC. This study proposes a hydrothermal process combined with pyrolysis activation method to convert digestate into nitrogen-rich porous biochar catalysts. The nitrogen in the raw material is effectively embedded into the carbon skeleton during the hydrothermal process, increasing the number of active sites. The three-dimensional porous structure of the material promotes the transport and diffusion of reactants in the catalyst. The results show that the catalyst (HT-PC-KOH) with hydrothermal followed by KOH activation had the highest nitrogen retention rate and excellent pore structure. The maximum power density of the MFC loaded with HT-PC-KOH is 1814 mW/m2, which represents 84 % of the power density of Pt/C. This work provides a new method for converting biomass into an oxygen reduction catalyst and makes a significant contribution to the efficient production of renewable energy from MFC.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Renewable Energy
Renewable Energy 工程技术-能源与燃料
CiteScore
18.40
自引率
9.20%
发文量
1955
审稿时长
6.6 months
期刊介绍: Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices. As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信