{"title":"Partial boundary regularity for the Navier–Stokes equations in time-dependent domains","authors":"Dominic Breit","doi":"10.1016/j.jde.2025.113299","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the incompressible Navier–Stokes equations in a moving domain whose boundary is prescribed by a function <span><math><mi>η</mi><mo>=</mo><mi>η</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span> (with <span><math><mi>y</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>) of low regularity. This is motivated by problems from fluid-structure interaction and our result applies, in particular, for linearised Koiter shells with dissipation. We prove partial boundary regularity for boundary suitable weak solutions assuming that <em>η</em> is continuous in time with values in the fractional Sobolev space <span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mi>y</mi></mrow><mrow><mn>2</mn><mo>−</mo><mn>1</mn><mo>/</mo><mi>p</mi><mo>,</mo><mi>p</mi></mrow></msubsup></math></span> for some <span><math><mi>p</mi><mo>></mo><mn>15</mn><mo>/</mo><mn>4</mn></math></span> and we have <span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>η</mi><mo>∈</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mi>t</mi></mrow><mrow><mn>3</mn></mrow></msubsup><mo>(</mo><msubsup><mrow><mi>W</mi></mrow><mrow><mi>y</mi></mrow><mrow><mn>1</mn><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msubsup><mo>)</mo></math></span> for some <span><math><msub><mrow><mi>q</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>></mo><mn>2</mn></math></span>.</div><div>The existence of boundary suitable weak solutions is a consequence of a new maximal regularity result for the Stokes equations in moving domains which is of independent interest.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"434 ","pages":"Article 113299"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625003262","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the incompressible Navier–Stokes equations in a moving domain whose boundary is prescribed by a function (with ) of low regularity. This is motivated by problems from fluid-structure interaction and our result applies, in particular, for linearised Koiter shells with dissipation. We prove partial boundary regularity for boundary suitable weak solutions assuming that η is continuous in time with values in the fractional Sobolev space for some and we have for some .
The existence of boundary suitable weak solutions is a consequence of a new maximal regularity result for the Stokes equations in moving domains which is of independent interest.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics