Partial boundary regularity for the Navier–Stokes equations in time-dependent domains

IF 2.4 2区 数学 Q1 MATHEMATICS
Dominic Breit
{"title":"Partial boundary regularity for the Navier–Stokes equations in time-dependent domains","authors":"Dominic Breit","doi":"10.1016/j.jde.2025.113299","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the incompressible Navier–Stokes equations in a moving domain whose boundary is prescribed by a function <span><math><mi>η</mi><mo>=</mo><mi>η</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span> (with <span><math><mi>y</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>) of low regularity. This is motivated by problems from fluid-structure interaction and our result applies, in particular, for linearised Koiter shells with dissipation. We prove partial boundary regularity for boundary suitable weak solutions assuming that <em>η</em> is continuous in time with values in the fractional Sobolev space <span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mi>y</mi></mrow><mrow><mn>2</mn><mo>−</mo><mn>1</mn><mo>/</mo><mi>p</mi><mo>,</mo><mi>p</mi></mrow></msubsup></math></span> for some <span><math><mi>p</mi><mo>&gt;</mo><mn>15</mn><mo>/</mo><mn>4</mn></math></span> and we have <span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>η</mi><mo>∈</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mi>t</mi></mrow><mrow><mn>3</mn></mrow></msubsup><mo>(</mo><msubsup><mrow><mi>W</mi></mrow><mrow><mi>y</mi></mrow><mrow><mn>1</mn><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msubsup><mo>)</mo></math></span> for some <span><math><msub><mrow><mi>q</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&gt;</mo><mn>2</mn></math></span>.</div><div>The existence of boundary suitable weak solutions is a consequence of a new maximal regularity result for the Stokes equations in moving domains which is of independent interest.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"434 ","pages":"Article 113299"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625003262","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the incompressible Navier–Stokes equations in a moving domain whose boundary is prescribed by a function η=η(t,y) (with yR2) of low regularity. This is motivated by problems from fluid-structure interaction and our result applies, in particular, for linearised Koiter shells with dissipation. We prove partial boundary regularity for boundary suitable weak solutions assuming that η is continuous in time with values in the fractional Sobolev space Wy21/p,p for some p>15/4 and we have tηLt3(Wy1,q0) for some q0>2.
The existence of boundary suitable weak solutions is a consequence of a new maximal regularity result for the Stokes equations in moving domains which is of independent interest.
时变域内Navier-Stokes方程的部分边界正则性
考虑运动域上不可压缩的Navier-Stokes方程,其边界由低正则性函数η=η(t,y)(其中y∈R2)规定。这是由流固相互作用问题引起的,我们的结果特别适用于具有耗散的线性Koiter壳。我们证明了边界适宜弱解的部分边界正则性,假设η在时间上连续且在分数Sobolev空间Wy2−1/p,p中,对于某些q0>;2,我们有∂tη∈Lt3(Wy1,q0)。边界适宜弱解的存在性是Stokes方程在运动域上的一个新的极大正则性结果的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信