{"title":"Three-stage deformation behaviors of a austenitic Fe-Mn-Al-C low-density steel: slip bands–twinning–shear bands","authors":"Ziyuan Gao, Qingfeng Kang, Zexi Zhang, Hui Wang, Cunyu Wang, Zhengdong Liu, Wenquan Cao","doi":"10.1016/j.mtla.2025.102407","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a systematic investigation of microstructure evolution and the mechanical response of a low-density steel during cold rolling with the thickness reduction of up to 90 %. With the strain increase, a three-stage deformation microstructural evolution from slip bands, to deformation twins, and eventually to shear bands has been observed based on detailed microstructure characterization. At the first stage (rolling reduction < 30 %), dislocation slip bands are the dominant deformation microstructure, due to the planar slip of dislocations. As strain increases, the band spacing is progressively refined with a saturation of ∼50 nm. These slip bands gradually evolved into microbands as a result of strain localization and plastic instability. At the second deformation stage (30 %–50 % rolling reduction), deformation twinning is activated, which was seldom reported in low-density steel due to its high stacking fault energy. The deformation twins were found to be preferentially nucleated in the grains with orientations approaching 〈001〉 // rolling direction and 〈111〉 // rolling direction. At the last deformation stage (60 %–90 % rolling reduction), the deformation was mainly controlled by the formation of shear bands, generated in the areas with orientations close to<span><math><mrow><mspace></mspace><mo>〈</mo><mn>111</mn><mo>〉</mo></mrow></math></span> // normal direction. In the mechanical response aspect, the strength was progressively increased with increasing rolling reduction. The formation of deformation twins and shear bands could notably enhance the strength, exhibiting a distinct three-staged mechanical behavior during cold rolling. This research provided a thorough understanding of the distinct microstructure evolution and mechanical response of the low-density steel during cold rolling.</div></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"40 ","pages":"Article 102407"},"PeriodicalIF":3.0000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589152925000742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a systematic investigation of microstructure evolution and the mechanical response of a low-density steel during cold rolling with the thickness reduction of up to 90 %. With the strain increase, a three-stage deformation microstructural evolution from slip bands, to deformation twins, and eventually to shear bands has been observed based on detailed microstructure characterization. At the first stage (rolling reduction < 30 %), dislocation slip bands are the dominant deformation microstructure, due to the planar slip of dislocations. As strain increases, the band spacing is progressively refined with a saturation of ∼50 nm. These slip bands gradually evolved into microbands as a result of strain localization and plastic instability. At the second deformation stage (30 %–50 % rolling reduction), deformation twinning is activated, which was seldom reported in low-density steel due to its high stacking fault energy. The deformation twins were found to be preferentially nucleated in the grains with orientations approaching 〈001〉 // rolling direction and 〈111〉 // rolling direction. At the last deformation stage (60 %–90 % rolling reduction), the deformation was mainly controlled by the formation of shear bands, generated in the areas with orientations close to // normal direction. In the mechanical response aspect, the strength was progressively increased with increasing rolling reduction. The formation of deformation twins and shear bands could notably enhance the strength, exhibiting a distinct three-staged mechanical behavior during cold rolling. This research provided a thorough understanding of the distinct microstructure evolution and mechanical response of the low-density steel during cold rolling.
期刊介绍:
Materialia is a multidisciplinary journal of materials science and engineering that publishes original peer-reviewed research articles. Articles in Materialia advance the understanding of the relationship between processing, structure, property, and function of materials.
Materialia publishes full-length research articles, review articles, and letters (short communications). In addition to receiving direct submissions, Materialia also accepts transfers from Acta Materialia, Inc. partner journals. Materialia offers authors the choice to publish on an open access model (with author fee), or on a subscription model (with no author fee).