{"title":"Second-order regular variation and second-order approximation of Hawkes processes","authors":"Ulrich Horst , Wei Xu","doi":"10.1016/j.jmaa.2025.129546","DOIUrl":null,"url":null,"abstract":"<div><div>This paper provides and extends second-order versions of several fundamental theorems on first-order regularly varying functions such as Karamata's theorem/representation and Tauberian's theorem. Our results are used to establish second-order approximations for the mean and variance of Hawkes processes with general kernels. Our approximations provide novel insights into the asymptotic behavior of Hawkes processes. They are also of key importance when establishing functional limit theorems for Hawkes processes.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 2","pages":"Article 129546"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25003270","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper provides and extends second-order versions of several fundamental theorems on first-order regularly varying functions such as Karamata's theorem/representation and Tauberian's theorem. Our results are used to establish second-order approximations for the mean and variance of Hawkes processes with general kernels. Our approximations provide novel insights into the asymptotic behavior of Hawkes processes. They are also of key importance when establishing functional limit theorems for Hawkes processes.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.