Dongfang Zeng , Yan Xu , Zhisheng Liu , Yuanbin Zhang , Lang Zou , Liantao Lu
{"title":"Fretting fatigue analysis and strength evaluation for swage-locking pinned aluminum alloy–steel connections under tension loading","authors":"Dongfang Zeng , Yan Xu , Zhisheng Liu , Yuanbin Zhang , Lang Zou , Liantao Lu","doi":"10.1016/j.triboint.2025.110711","DOIUrl":null,"url":null,"abstract":"<div><div>Given the early stages of widespread adoption of swage-locking pinned connections in rail vehicle structures, research on their fatigue failure behavior remains scarce. This study investigates the fretting fatigue behavior of aluminum alloy–steel connections fastened by swage-locking pins through experiments and numerical analysis. It involved fatigue experiments under tension loading, fretting wear and fatigue analyses, followed by fatigue crack initiation prediction. Results show that the contact surface of clamped plates can be divided into the stick, slip, and open zones, with fretting wear occurring within the slip zone of aluminum alloy plate. Fretting fatigue cracks typically initiate within the slip zone near the stick-slip boundary, specifically at wear scars edges. A finite element model was developed to analyze contact status and stress states of test connections, with the friction coefficient at the aluminum alloy-steel interface optimized based on measured stick zone sizes. Results show the fatigue crack initiation of test connections is predominantly influenced by tensile stresses. Consequently, the SWT multiaxial fatigue criterion, combined with the critical plane method, can be used to predict crack initiation. The predicted crack initiation sites, angles, and fatigue strengths closely matched experimental results, with errors below 20 %, 5 %, and 7 %, respectively.</div></div>","PeriodicalId":23238,"journal":{"name":"Tribology International","volume":"209 ","pages":"Article 110711"},"PeriodicalIF":6.1000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology International","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301679X25002063","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Given the early stages of widespread adoption of swage-locking pinned connections in rail vehicle structures, research on their fatigue failure behavior remains scarce. This study investigates the fretting fatigue behavior of aluminum alloy–steel connections fastened by swage-locking pins through experiments and numerical analysis. It involved fatigue experiments under tension loading, fretting wear and fatigue analyses, followed by fatigue crack initiation prediction. Results show that the contact surface of clamped plates can be divided into the stick, slip, and open zones, with fretting wear occurring within the slip zone of aluminum alloy plate. Fretting fatigue cracks typically initiate within the slip zone near the stick-slip boundary, specifically at wear scars edges. A finite element model was developed to analyze contact status and stress states of test connections, with the friction coefficient at the aluminum alloy-steel interface optimized based on measured stick zone sizes. Results show the fatigue crack initiation of test connections is predominantly influenced by tensile stresses. Consequently, the SWT multiaxial fatigue criterion, combined with the critical plane method, can be used to predict crack initiation. The predicted crack initiation sites, angles, and fatigue strengths closely matched experimental results, with errors below 20 %, 5 %, and 7 %, respectively.
期刊介绍:
Tribology is the science of rubbing surfaces and contributes to every facet of our everyday life, from live cell friction to engine lubrication and seismology. As such tribology is truly multidisciplinary and this extraordinary breadth of scientific interest is reflected in the scope of Tribology International.
Tribology International seeks to publish original research papers of the highest scientific quality to provide an archival resource for scientists from all backgrounds. Written contributions are invited reporting experimental and modelling studies both in established areas of tribology and emerging fields. Scientific topics include the physics or chemistry of tribo-surfaces, bio-tribology, surface engineering and materials, contact mechanics, nano-tribology, lubricants and hydrodynamic lubrication.