A rechargeable aqueous dendrite-free zinc ion battery with robust performance enabled by the design of electrolyte additive

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Yonghui Guo, Yaya Jia, Shuang Wang, Ling Wang, Shan Liu
{"title":"A rechargeable aqueous dendrite-free zinc ion battery with robust performance enabled by the design of electrolyte additive","authors":"Yonghui Guo,&nbsp;Yaya Jia,&nbsp;Shuang Wang,&nbsp;Ling Wang,&nbsp;Shan Liu","doi":"10.1016/j.jpowsour.2025.236981","DOIUrl":null,"url":null,"abstract":"<div><div>Aqueous zinc ion batteries (AZIBs) have attained significant progress in the field owing to their outstanding safety, low cost, and high theoretical capacity. However, several issues, such as dendrite formation and hydrogen evolution reactions, limit the practical application of AZIBs. In this regard, the aforementioned problem of AZIBs is addressed by combining traditional electrolytes with environmentally friendly, non-toxic, and low-cost electrolyte additives. In this work, sodium sulfate and sodium citrate were selected as electrolyte additives for the optimization of AZIBs. It was demonstrated that sodium ions can alter the deposition morphology of Zn<sup>2+</sup> to prevent dendrite formation, thereby stabilizing the Zn anode. Consequently, the symmetrical cell can cycle stably for 1400 h at a current density of 5 mA cm<sup>−2</sup> and 400 h at 20 mA cm<sup>−2</sup>, respectively. This work presents a simple and cost-effective approach to achieve high-performance AZIBs.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"642 ","pages":"Article 236981"},"PeriodicalIF":8.1000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775325008171","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous zinc ion batteries (AZIBs) have attained significant progress in the field owing to their outstanding safety, low cost, and high theoretical capacity. However, several issues, such as dendrite formation and hydrogen evolution reactions, limit the practical application of AZIBs. In this regard, the aforementioned problem of AZIBs is addressed by combining traditional electrolytes with environmentally friendly, non-toxic, and low-cost electrolyte additives. In this work, sodium sulfate and sodium citrate were selected as electrolyte additives for the optimization of AZIBs. It was demonstrated that sodium ions can alter the deposition morphology of Zn2+ to prevent dendrite formation, thereby stabilizing the Zn anode. Consequently, the symmetrical cell can cycle stably for 1400 h at a current density of 5 mA cm−2 and 400 h at 20 mA cm−2, respectively. This work presents a simple and cost-effective approach to achieve high-performance AZIBs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信