Yonghui Guo, Yaya Jia, Shuang Wang, Ling Wang, Shan Liu
{"title":"A rechargeable aqueous dendrite-free zinc ion battery with robust performance enabled by the design of electrolyte additive","authors":"Yonghui Guo, Yaya Jia, Shuang Wang, Ling Wang, Shan Liu","doi":"10.1016/j.jpowsour.2025.236981","DOIUrl":null,"url":null,"abstract":"<div><div>Aqueous zinc ion batteries (AZIBs) have attained significant progress in the field owing to their outstanding safety, low cost, and high theoretical capacity. However, several issues, such as dendrite formation and hydrogen evolution reactions, limit the practical application of AZIBs. In this regard, the aforementioned problem of AZIBs is addressed by combining traditional electrolytes with environmentally friendly, non-toxic, and low-cost electrolyte additives. In this work, sodium sulfate and sodium citrate were selected as electrolyte additives for the optimization of AZIBs. It was demonstrated that sodium ions can alter the deposition morphology of Zn<sup>2+</sup> to prevent dendrite formation, thereby stabilizing the Zn anode. Consequently, the symmetrical cell can cycle stably for 1400 h at a current density of 5 mA cm<sup>−2</sup> and 400 h at 20 mA cm<sup>−2</sup>, respectively. This work presents a simple and cost-effective approach to achieve high-performance AZIBs.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"642 ","pages":"Article 236981"},"PeriodicalIF":8.1000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775325008171","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Aqueous zinc ion batteries (AZIBs) have attained significant progress in the field owing to their outstanding safety, low cost, and high theoretical capacity. However, several issues, such as dendrite formation and hydrogen evolution reactions, limit the practical application of AZIBs. In this regard, the aforementioned problem of AZIBs is addressed by combining traditional electrolytes with environmentally friendly, non-toxic, and low-cost electrolyte additives. In this work, sodium sulfate and sodium citrate were selected as electrolyte additives for the optimization of AZIBs. It was demonstrated that sodium ions can alter the deposition morphology of Zn2+ to prevent dendrite formation, thereby stabilizing the Zn anode. Consequently, the symmetrical cell can cycle stably for 1400 h at a current density of 5 mA cm−2 and 400 h at 20 mA cm−2, respectively. This work presents a simple and cost-effective approach to achieve high-performance AZIBs.
期刊介绍:
The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells.
Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include:
• Portable electronics
• Electric and Hybrid Electric Vehicles
• Uninterruptible Power Supply (UPS) systems
• Storage of renewable energy
• Satellites and deep space probes
• Boats and ships, drones and aircrafts
• Wearable energy storage systems