Andres Abea , Chihiro Sugihara , Yvan Llave , Saki Sudou , Mark Anthony Redo , Maria Dolors Guàrdia , Israel Muñoz , Mika Fukuoka
{"title":"Computer simulation of ready-to-eat rice reheating on a microwave oven: Application of dielectric mixture equations in foods of varying porosity ratio","authors":"Andres Abea , Chihiro Sugihara , Yvan Llave , Saki Sudou , Mark Anthony Redo , Maria Dolors Guàrdia , Israel Muñoz , Mika Fukuoka","doi":"10.1016/j.jfoodeng.2025.112598","DOIUrl":null,"url":null,"abstract":"<div><div>Predictive modeling of dielectric heating in porous foods is challenging due to their nature as multiphase materials. To explore the relationship between the topological structure of multiphase foods and the accuracy of dielectric mixture models, the degree of anisotropy of two cooked rice samples with 26 and 32 % porosity was determined, and their dielectric properties were estimated using the Lichtenecker (LK), Landau-Lifshitz-Looyenga (LLL), and Complex Refractive Index Mixture (CRIM) equations. These properties were used in a predictive finite-element model for reheating an apparent homogeneous rice sample on a flatbed microwave (MW) for 120 s. The results were compared with experimental data and a validated two-element model. Unlike LK and LLL equations, the CRIM equation predicted heat accumulation towards the edges of the container at the two values of porosity ratio evaluated, in accordance with the experimental results and the isotropic nature of the sample. The simulated temperature distributions suggest that the three evaluated equations could predict the MW heating behavior of rice to some extent, but that in order to obtain more accurate results, it could be useful to obtain an empirical topology-related parameter specific for this sample. These results can provide insight on the relationship between the topology of the porous structure in the sample and the adequacy of different dielectric mixture models.</div></div>","PeriodicalId":359,"journal":{"name":"Journal of Food Engineering","volume":"398 ","pages":"Article 112598"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0260877425001335","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Predictive modeling of dielectric heating in porous foods is challenging due to their nature as multiphase materials. To explore the relationship between the topological structure of multiphase foods and the accuracy of dielectric mixture models, the degree of anisotropy of two cooked rice samples with 26 and 32 % porosity was determined, and their dielectric properties were estimated using the Lichtenecker (LK), Landau-Lifshitz-Looyenga (LLL), and Complex Refractive Index Mixture (CRIM) equations. These properties were used in a predictive finite-element model for reheating an apparent homogeneous rice sample on a flatbed microwave (MW) for 120 s. The results were compared with experimental data and a validated two-element model. Unlike LK and LLL equations, the CRIM equation predicted heat accumulation towards the edges of the container at the two values of porosity ratio evaluated, in accordance with the experimental results and the isotropic nature of the sample. The simulated temperature distributions suggest that the three evaluated equations could predict the MW heating behavior of rice to some extent, but that in order to obtain more accurate results, it could be useful to obtain an empirical topology-related parameter specific for this sample. These results can provide insight on the relationship between the topology of the porous structure in the sample and the adequacy of different dielectric mixture models.
期刊介绍:
The journal publishes original research and review papers on any subject at the interface between food and engineering, particularly those of relevance to industry, including:
Engineering properties of foods, food physics and physical chemistry; processing, measurement, control, packaging, storage and distribution; engineering aspects of the design and production of novel foods and of food service and catering; design and operation of food processes, plant and equipment; economics of food engineering, including the economics of alternative processes.
Accounts of food engineering achievements are of particular value.