{"title":"Assessing transcriptomic signatures of aging: Testing an mRNA marker panel for forensic age estimation of blood samples","authors":"Nadescha Viviane Hänggi , Jacqueline Neubauer , Yael Marti , Regine Banemann , Galina Kulstein , Cornelius Courts , Annica Gosch , Thorsten Hadrys , Cordula Haas , Guro Dørum","doi":"10.1016/j.fsigen.2025.103282","DOIUrl":null,"url":null,"abstract":"<div><div>Estimating the age of an unknown perpetrator can be a valuable tool in narrowing down a group of suspects. Research efforts to estimate the age of a stain donor have mainly focused on epigenetic modifications, but there is evidence that RNA expression patterns, i.e. the composition of the transcriptome, change with increasing age, which could be a promising molecular alternative for age prediction. In a previous study, we identified a total of 508 mRNA markers with age related expression from two blood whole transcriptome sequencing data sets, using differential expression analysis with DESeq2 and marker selection with lasso regression. For this study, the selected markers from both approaches were combined into an RNA-specific targeted MPS assay for the Ion Torrent platform and evaluated with 100 EDTA blood samples from healthy donors (aged between 23 and 73 years). We compared three different normalization methods for the obtained sequencing data and investigated the performance of various regression techniques for age prediction. The model based on elastic net regression and dSVA-normalized data exhibited the most robust performance, achieving an MAE of 9.29 years and a correlation of 0.57 between the chronological and predicted age. Although the use of a targeted approach instead of RNA-Seq offers several advantages in a forensic setting, we observed a considerable amount of unwanted variation in the targeted sequencing data. We conclude that it is challenging to detect distinct signals associated with chronological age.</div></div>","PeriodicalId":50435,"journal":{"name":"Forensic Science International-Genetics","volume":"78 ","pages":"Article 103282"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Science International-Genetics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872497325000626","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Estimating the age of an unknown perpetrator can be a valuable tool in narrowing down a group of suspects. Research efforts to estimate the age of a stain donor have mainly focused on epigenetic modifications, but there is evidence that RNA expression patterns, i.e. the composition of the transcriptome, change with increasing age, which could be a promising molecular alternative for age prediction. In a previous study, we identified a total of 508 mRNA markers with age related expression from two blood whole transcriptome sequencing data sets, using differential expression analysis with DESeq2 and marker selection with lasso regression. For this study, the selected markers from both approaches were combined into an RNA-specific targeted MPS assay for the Ion Torrent platform and evaluated with 100 EDTA blood samples from healthy donors (aged between 23 and 73 years). We compared three different normalization methods for the obtained sequencing data and investigated the performance of various regression techniques for age prediction. The model based on elastic net regression and dSVA-normalized data exhibited the most robust performance, achieving an MAE of 9.29 years and a correlation of 0.57 between the chronological and predicted age. Although the use of a targeted approach instead of RNA-Seq offers several advantages in a forensic setting, we observed a considerable amount of unwanted variation in the targeted sequencing data. We conclude that it is challenging to detect distinct signals associated with chronological age.
期刊介绍:
Forensic Science International: Genetics is the premier journal in the field of Forensic Genetics. This branch of Forensic Science can be defined as the application of genetics to human and non-human material (in the sense of a science with the purpose of studying inherited characteristics for the analysis of inter- and intra-specific variations in populations) for the resolution of legal conflicts.
The scope of the journal includes:
Forensic applications of human polymorphism.
Testing of paternity and other family relationships, immigration cases, typing of biological stains and tissues from criminal casework, identification of human remains by DNA testing methodologies.
Description of human polymorphisms of forensic interest, with special interest in DNA polymorphisms.
Autosomal DNA polymorphisms, mini- and microsatellites (or short tandem repeats, STRs), single nucleotide polymorphisms (SNPs), X and Y chromosome polymorphisms, mtDNA polymorphisms, and any other type of DNA variation with potential forensic applications.
Non-human DNA polymorphisms for crime scene investigation.
Population genetics of human polymorphisms of forensic interest.
Population data, especially from DNA polymorphisms of interest for the solution of forensic problems.
DNA typing methodologies and strategies.
Biostatistical methods in forensic genetics.
Evaluation of DNA evidence in forensic problems (such as paternity or immigration cases, criminal casework, identification), classical and new statistical approaches.
Standards in forensic genetics.
Recommendations of regulatory bodies concerning methods, markers, interpretation or strategies or proposals for procedural or technical standards.
Quality control.
Quality control and quality assurance strategies, proficiency testing for DNA typing methodologies.
Criminal DNA databases.
Technical, legal and statistical issues.
General ethical and legal issues related to forensic genetics.