Enhancing electrical insulation of epoxy composites by suppressing charge injection and subsequently electric field distortion

IF 6.5 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Xianhua Huan , Bingbing Hu , Zhiwen Ji , Chao Gao , Fusheng Zhou , Jiahe Yu , Bin Du , Yushun Zhao
{"title":"Enhancing electrical insulation of epoxy composites by suppressing charge injection and subsequently electric field distortion","authors":"Xianhua Huan ,&nbsp;Bingbing Hu ,&nbsp;Zhiwen Ji ,&nbsp;Chao Gao ,&nbsp;Fusheng Zhou ,&nbsp;Jiahe Yu ,&nbsp;Bin Du ,&nbsp;Yushun Zhao","doi":"10.1016/j.coco.2025.102391","DOIUrl":null,"url":null,"abstract":"<div><div>Epoxy composites with flame-retardant fillers are key electrical insulation materials for dry-type high-voltage (HV) transformers, but the ionic structure nature of the flame-retardant fillers can lead to the deterioration of the insulation performance, limiting the reliability of HV power systems. This study systematically examines how flame-retardant filler introduction and interface structure evolution impact charge transport within composites, aiming to refine the design principles of flame-retardant electrical insulation materials. Composites with uniformly dispersed fillers and ideal interfacial bonding with the matrix exhibit improved resistivity (1.41 × 10<sup>16</sup> Ω cm), attributed to the dense cross-linked network that limits impurity ion movement. More importantly, the behavior of space charge accumulation and dissipation within the composites indicates that the interfacial structure affects the internal energy level distribution, thereby influencing charge carrier transport characteristics. By optimizing the interfacial structure, the suppression of electrode charge injection and reduction of electric field distortion (from 15.1 % to 8.5 %) enhance the electrical insulation reliability of epoxy composites. These findings deepen the understanding of structure-property relationships in epoxy composites, offering critical insights for designing advanced flame-retardant HV electrical insulation materials.</div></div>","PeriodicalId":10533,"journal":{"name":"Composites Communications","volume":"56 ","pages":"Article 102391"},"PeriodicalIF":6.5000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Communications","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452213925001445","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

Epoxy composites with flame-retardant fillers are key electrical insulation materials for dry-type high-voltage (HV) transformers, but the ionic structure nature of the flame-retardant fillers can lead to the deterioration of the insulation performance, limiting the reliability of HV power systems. This study systematically examines how flame-retardant filler introduction and interface structure evolution impact charge transport within composites, aiming to refine the design principles of flame-retardant electrical insulation materials. Composites with uniformly dispersed fillers and ideal interfacial bonding with the matrix exhibit improved resistivity (1.41 × 1016 Ω cm), attributed to the dense cross-linked network that limits impurity ion movement. More importantly, the behavior of space charge accumulation and dissipation within the composites indicates that the interfacial structure affects the internal energy level distribution, thereby influencing charge carrier transport characteristics. By optimizing the interfacial structure, the suppression of electrode charge injection and reduction of electric field distortion (from 15.1 % to 8.5 %) enhance the electrical insulation reliability of epoxy composites. These findings deepen the understanding of structure-property relationships in epoxy composites, offering critical insights for designing advanced flame-retardant HV electrical insulation materials.
通过抑制电荷注入和电场畸变来提高环氧复合材料的电绝缘性
环氧复合阻燃填料是干式高压变压器的关键电绝缘材料,但阻燃填料的离子结构性质会导致绝缘性能恶化,限制高压电力系统的可靠性。本研究系统考察了阻燃填料的引入和界面结构的演变对复合材料内部电荷输运的影响,旨在完善阻燃电绝缘材料的设计原则。由于密集的交联网络限制了杂质离子的移动,具有均匀分散填料和与基体理想界面结合的复合材料表现出更高的电阻率(1.41 × 1016 Ω cm)。更重要的是,复合材料内部空间电荷的积累和耗散行为表明,界面结构影响了内部能级分布,从而影响了载流子的输运特性。通过优化界面结构,抑制电极电荷注入,降低电场畸变(从15.1%降低到8.5%),提高了环氧复合材料的电绝缘可靠性。这些发现加深了对环氧复合材料结构-性能关系的理解,为设计先进的阻燃高压电绝缘材料提供了重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Composites Communications
Composites Communications Materials Science-Ceramics and Composites
CiteScore
12.10
自引率
10.00%
发文量
340
审稿时长
36 days
期刊介绍: Composites Communications (Compos. Commun.) is a peer-reviewed journal publishing short communications and letters on the latest advances in composites science and technology. With a rapid review and publication process, its goal is to disseminate new knowledge promptly within the composites community. The journal welcomes manuscripts presenting creative concepts and new findings in design, state-of-the-art approaches in processing, synthesis, characterization, and mechanics modeling. In addition to traditional fiber-/particulate-reinforced engineering composites, it encourages submissions on composites with exceptional physical, mechanical, and fracture properties, as well as those with unique functions and significant application potential. This includes biomimetic and bio-inspired composites for biomedical applications, functional nano-composites for thermal management and energy applications, and composites designed for extreme service environments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信