Visible light human activity recognition driven by generative language model

IF 14.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yanbing Yang , Ziwei Liu , Yongkun Chen , Binyu Yan , Yimao Sun , Tao Feng
{"title":"Visible light human activity recognition driven by generative language model","authors":"Yanbing Yang ,&nbsp;Ziwei Liu ,&nbsp;Yongkun Chen ,&nbsp;Binyu Yan ,&nbsp;Yimao Sun ,&nbsp;Tao Feng","doi":"10.1016/j.inffus.2025.103159","DOIUrl":null,"url":null,"abstract":"<div><div>Visible light-based indoor Human Activity Recognition (HAR) rises as a promising approach, due to its ability to provide indoor illumination, privacy protection, and serve sensing purposes. However, current visible light HAR methods are primarily focused on classification of individual human activity, which falls short of naturally representing and contextual relations. In this paper, we extend the challenge to a cross-modal alignment task between visible light signals and textual descriptions, proposing a framework that leverages generative large language models (LLMs) to decode visible light feature representations into human activity descriptions through sequence-to-sequence modeling. We implement a prototype system of our method and build up a custom dataset. Experiments in real indoor space demonstrate that our method achieves effective natural language level HAR from visible light sensing system, it promotes the information fusion between visible light and natural language, bringing the intelligent physical information systems towards realistic application with the integration of the generative LLMs.</div></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"121 ","pages":"Article 103159"},"PeriodicalIF":14.7000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566253525002325","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Visible light-based indoor Human Activity Recognition (HAR) rises as a promising approach, due to its ability to provide indoor illumination, privacy protection, and serve sensing purposes. However, current visible light HAR methods are primarily focused on classification of individual human activity, which falls short of naturally representing and contextual relations. In this paper, we extend the challenge to a cross-modal alignment task between visible light signals and textual descriptions, proposing a framework that leverages generative large language models (LLMs) to decode visible light feature representations into human activity descriptions through sequence-to-sequence modeling. We implement a prototype system of our method and build up a custom dataset. Experiments in real indoor space demonstrate that our method achieves effective natural language level HAR from visible light sensing system, it promotes the information fusion between visible light and natural language, bringing the intelligent physical information systems towards realistic application with the integration of the generative LLMs.
基于生成语言模型的可见光人体活动识别
基于可见光的室内人类活动识别(HAR)由于能够提供室内照明、隐私保护和服务于传感目的而成为一种有前途的方法。然而,目前的可见光HAR方法主要集中在个体人类活动的分类上,缺乏自然表示和上下文关系。在本文中,我们将挑战扩展到可见光信号和文本描述之间的跨模态对齐任务,提出了一个框架,该框架利用生成式大型语言模型(llm)通过序列到序列建模将可见光特征表示解码为人类活动描述。我们实现了该方法的原型系统,并建立了自定义数据集。在真实室内空间的实验表明,该方法有效地实现了可见光感知系统的自然语言级HAR,促进了可见光与自然语言之间的信息融合,通过生成式llm的集成,使智能物理信息系统走向现实应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Fusion
Information Fusion 工程技术-计算机:理论方法
CiteScore
33.20
自引率
4.30%
发文量
161
审稿时长
7.9 months
期刊介绍: Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信