Stationary Navier–Stokes equations on the half spaces in the scaling critical framework

IF 2.4 2区 数学 Q1 MATHEMATICS
Mikihiro Fujii
{"title":"Stationary Navier–Stokes equations on the half spaces in the scaling critical framework","authors":"Mikihiro Fujii","doi":"10.1016/j.jde.2025.113298","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider the inhomogeneous Dirichlet boundary value problem for the stationary Navier–Stokes equations in <em>n</em>-dimensional half spaces <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mi>n</mi></mrow></msubsup><mo>=</mo><mo>{</mo><mi>x</mi><mo>=</mo><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mspace></mspace><mo>;</mo><mspace></mspace><msup><mrow><mi>x</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>&gt;</mo><mn>0</mn><mo>}</mo></math></span> with <span><math><mi>n</mi><mo>⩾</mo><mn>3</mn></math></span> and prove the well-posedness<span><span><sup>1</sup></span></span> in the scaling critical Besov spaces. Our approach is to regard the system as an evolution equation for the normal variable <span><math><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and reformulate it as an integral equation. Then, we achieve the goal by making use of the maximal regularity method that has developed in the context of nonstationary analysis in critical Besov spaces. Furthermore, for the case of <span><math><mi>n</mi><mo>⩾</mo><mn>4</mn></math></span>, we find that the asymptotic profile of the solution as <span><math><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>→</mo><mo>∞</mo></math></span> is given by the <span><math><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>-dimensional stationary Navier–Stokes flow.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"435 ","pages":"Article 113298"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625003250","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the inhomogeneous Dirichlet boundary value problem for the stationary Navier–Stokes equations in n-dimensional half spaces R+n={x=(x,xn);xRn1,xn>0} with n3 and prove the well-posedness1 in the scaling critical Besov spaces. Our approach is to regard the system as an evolution equation for the normal variable xn and reformulate it as an integral equation. Then, we achieve the goal by making use of the maximal regularity method that has developed in the context of nonstationary analysis in critical Besov spaces. Furthermore, for the case of n4, we find that the asymptotic profile of the solution as xn is given by the (n1)-dimensional stationary Navier–Stokes flow.
标度临界框架中半空间上的平稳Navier-Stokes方程
在本文中,我们考虑了n维半空间R+n={x=(x ',xn);x '∈Rn - 1,xn>;0}中平稳Navier-Stokes方程的非齐次Dirichlet边值问题,且n大于或等于3,并证明了尺度临界Besov空间中的稳定性1。我们的方法是将系统看作是正态变量xn的演化方程,并将其重新表述为积分方程。然后,我们利用在临界Besov空间的非平稳分析背景下发展起来的最大正则性方法来实现这一目标。此外,对于n大于或等于4的情况,我们发现当xn→∞时解的渐近轮廓由(n−1)维平稳Navier-Stokes流给出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信