Multimodal metaphor recognition based on chain-of-cognition prompting

IF 2.1 3区 心理学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Dongyu Zhang , Xingyuan Lu , Mulin Zhuang , Senqi Yang , Hongjun Chen
{"title":"Multimodal metaphor recognition based on chain-of-cognition prompting","authors":"Dongyu Zhang ,&nbsp;Xingyuan Lu ,&nbsp;Mulin Zhuang ,&nbsp;Senqi Yang ,&nbsp;Hongjun Chen","doi":"10.1016/j.cogsys.2025.101356","DOIUrl":null,"url":null,"abstract":"<div><div>Metaphor is a way of thinking and cognition prevalent in human language. With the development of social media and multimodal data, metaphor recognition research has expanded from the traditional unimodal scope (such as text or images) to the multimodality. However, current multimodal metaphor processing methods mainly focus on fusion techniques for multiple modalities such as text and image, but neglect the cognitive mechanism of metaphor as a way of thinking, and are deficient in utilizing pre-trained information from large language models. Therefore, this paper proposes a chain-of-cognition prompting (CoC) method to address multimodal metaphor recognition task, which makes full use of the pre-training information of the large model in order to better recognize metaphors. The method utilizes prompting words to construct inputs that guide the large language model to reason about potential metaphorical source and target domain related entities and associations between entities in the sample. At the same time, visual information is obtained through image caption extraction and a visual encoder to enable the model to reason and produce metaphor recognition results. The experimental results show that the method performs well on the metaphor recognition task, which is better than the existing baseline model, verifying the effectiveness of the method on the metaphor recognition task.</div></div>","PeriodicalId":55242,"journal":{"name":"Cognitive Systems Research","volume":"91 ","pages":"Article 101356"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Systems Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389041725000361","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Metaphor is a way of thinking and cognition prevalent in human language. With the development of social media and multimodal data, metaphor recognition research has expanded from the traditional unimodal scope (such as text or images) to the multimodality. However, current multimodal metaphor processing methods mainly focus on fusion techniques for multiple modalities such as text and image, but neglect the cognitive mechanism of metaphor as a way of thinking, and are deficient in utilizing pre-trained information from large language models. Therefore, this paper proposes a chain-of-cognition prompting (CoC) method to address multimodal metaphor recognition task, which makes full use of the pre-training information of the large model in order to better recognize metaphors. The method utilizes prompting words to construct inputs that guide the large language model to reason about potential metaphorical source and target domain related entities and associations between entities in the sample. At the same time, visual information is obtained through image caption extraction and a visual encoder to enable the model to reason and produce metaphor recognition results. The experimental results show that the method performs well on the metaphor recognition task, which is better than the existing baseline model, verifying the effectiveness of the method on the metaphor recognition task.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cognitive Systems Research
Cognitive Systems Research 工程技术-计算机:人工智能
CiteScore
9.40
自引率
5.10%
发文量
40
审稿时长
>12 weeks
期刊介绍: Cognitive Systems Research is dedicated to the study of human-level cognition. As such, it welcomes papers which advance the understanding, design and applications of cognitive and intelligent systems, both natural and artificial. The journal brings together a broad community studying cognition in its many facets in vivo and in silico, across the developmental spectrum, focusing on individual capacities or on entire architectures. It aims to foster debate and integrate ideas, concepts, constructs, theories, models and techniques from across different disciplines and different perspectives on human-level cognition. The scope of interest includes the study of cognitive capacities and architectures - both brain-inspired and non-brain-inspired - and the application of cognitive systems to real-world problems as far as it offers insights relevant for the understanding of cognition. Cognitive Systems Research therefore welcomes mature and cutting-edge research approaching cognition from a systems-oriented perspective, both theoretical and empirically-informed, in the form of original manuscripts, short communications, opinion articles, systematic reviews, and topical survey articles from the fields of Cognitive Science (including Philosophy of Cognitive Science), Artificial Intelligence/Computer Science, Cognitive Robotics, Developmental Science, Psychology, and Neuroscience and Neuromorphic Engineering. Empirical studies will be considered if they are supplemented by theoretical analyses and contributions to theory development and/or computational modelling studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信