{"title":"Novel tetrapod-structured cerium-MOF/GO edifices in a redox-additive electrolyte for high-performance smart supercapacitors","authors":"Shruti Rialach , Sanjeev Gautam , Navdeep Goyal , Surinder Paul","doi":"10.1016/j.synthmet.2025.117871","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing demand for efficient energy storage systems has driven research into high-performance advanced materials for supercapacitors. Current advancement in the creation of smart supercapacitors leads to the introduction of Cerium-(Metal-Organic-Frameworks)/Graphene Oxide (Ce-MOF/GO) edifices as active electrode materials, investigating two distinct morphologies of the MOF precursor. Structural transformations were analyzed using X-ray diffraction (XRD) with Rietveld refinement, which confirmed the formation of Ce-MOF/GO. High-resolution transmission electron microscopy (HR-TEM) revealed uniformly dispersed tetrapod-structured Ce-2,6-Naphthalenedicarboxylic acid/GO (CDG) and rod-structured Ce-1,3,5-Benzenetricarboxylic acid/GO (CTG) crystallites within the GO matrix, whereas Fourier transform infrared (FT-IR) spectroscopy revealed the oxygen-comprising functional groups attached to their surface. The electrochemical performance was evaluated through cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS) in a redox-additive electrolyte, for which CDG demonstrated noteworthy performance based on various parameters, owing to its tetrapod structure which furnishes greater surface area and more active sites, leveraging ion diffusion and redox reactions. CDG demonstrated an outstanding specific capacitance of 2372.08 F g<sup>−1</sup> at a current density of 1 A g<sup>−1</sup>, and a high energy density of 766.84 Wh kg<sup>−1</sup> at a power density of 4.00 kW kg<sup>−1</sup>, in the redox-additive [KOH + KFC] electrolyte, whilst retaining 94.83 % of the initial capacitance after 10,000 charging/discharging cycles. These findings underscore the potential of Ce-MOF/GO composites, particularly CDG, making it a promising candidate for next-generation smart supercapacitors, with applications ranging from sustainable energy solutions to adaptive, intelligent devices in modern electronics.</div></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"312 ","pages":"Article 117871"},"PeriodicalIF":4.0000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic Metals","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0379677925000475","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing demand for efficient energy storage systems has driven research into high-performance advanced materials for supercapacitors. Current advancement in the creation of smart supercapacitors leads to the introduction of Cerium-(Metal-Organic-Frameworks)/Graphene Oxide (Ce-MOF/GO) edifices as active electrode materials, investigating two distinct morphologies of the MOF precursor. Structural transformations were analyzed using X-ray diffraction (XRD) with Rietveld refinement, which confirmed the formation of Ce-MOF/GO. High-resolution transmission electron microscopy (HR-TEM) revealed uniformly dispersed tetrapod-structured Ce-2,6-Naphthalenedicarboxylic acid/GO (CDG) and rod-structured Ce-1,3,5-Benzenetricarboxylic acid/GO (CTG) crystallites within the GO matrix, whereas Fourier transform infrared (FT-IR) spectroscopy revealed the oxygen-comprising functional groups attached to their surface. The electrochemical performance was evaluated through cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS) in a redox-additive electrolyte, for which CDG demonstrated noteworthy performance based on various parameters, owing to its tetrapod structure which furnishes greater surface area and more active sites, leveraging ion diffusion and redox reactions. CDG demonstrated an outstanding specific capacitance of 2372.08 F g−1 at a current density of 1 A g−1, and a high energy density of 766.84 Wh kg−1 at a power density of 4.00 kW kg−1, in the redox-additive [KOH + KFC] electrolyte, whilst retaining 94.83 % of the initial capacitance after 10,000 charging/discharging cycles. These findings underscore the potential of Ce-MOF/GO composites, particularly CDG, making it a promising candidate for next-generation smart supercapacitors, with applications ranging from sustainable energy solutions to adaptive, intelligent devices in modern electronics.
期刊介绍:
This journal is an international medium for the rapid publication of original research papers, short communications and subject reviews dealing with research on and applications of electronic polymers and electronic molecular materials including novel carbon architectures. These functional materials have the properties of metals, semiconductors or magnets and are distinguishable from elemental and alloy/binary metals, semiconductors and magnets.