Fabrication of Na0.67Li0.05Ni0.28Mn0.67O2 Cathode with Synergistic Engineering of Li-Doping and Mn-Precursor for High-Performance Sodium-Ion Batteries

IF 5.2 3区 工程技术 Q2 ENERGY & FUELS
Xiongfeng Lin, Junjun Zhang*, Daxian Cao, Hangcheng Yang, Weizhou Chai, Shuoyu Wang, Yu Chen and Hongkang Wang*, 
{"title":"Fabrication of Na0.67Li0.05Ni0.28Mn0.67O2 Cathode with Synergistic Engineering of Li-Doping and Mn-Precursor for High-Performance Sodium-Ion Batteries","authors":"Xiongfeng Lin,&nbsp;Junjun Zhang*,&nbsp;Daxian Cao,&nbsp;Hangcheng Yang,&nbsp;Weizhou Chai,&nbsp;Shuoyu Wang,&nbsp;Yu Chen and Hongkang Wang*,&nbsp;","doi":"10.1021/acs.energyfuels.5c0056410.1021/acs.energyfuels.5c00564","DOIUrl":null,"url":null,"abstract":"<p >P2-type transition-metal oxides as promising cathode materials for sodium-ion batteries (SIBs) possess unique layered structures and superior electrochemical properties, but suffer from the kinetic retardation and structural instability caused by problems such as Na<sup>+</sup>/vacancy ordering, Jahn–Teller distortion, and irreversible P2–O2 phase transition. Herein, we report the fabrication of a P2-type Na<sub>0.67</sub>Li<sub>0.05</sub>Ni<sub>0.28</sub>Mn<sub>0.67</sub>O<sub>2</sub> cathode material via a simple solid-state method, using micro-octahedral Mn<sub>2</sub>O<sub>3</sub> as Mn-precursor with simultaneous Li-doping. The combined adoptions of micro-octahedral Mn<sub>2</sub>O<sub>3</sub> precursors and Li-doping effectively enhance the structural stability of the Na<sub>0.67</sub>Li<sub>0.05</sub>Ni<sub>0.28</sub>Mn<sub>0.67</sub>O<sub>2</sub> cathode by inhibiting the Jahn–Teller distortion and suppressing the phase transition of P2–O2 and increase the electronic conductivity and ion diffusion coefficient during charging and discharging processes. Consequently, the as-fabricated Na<sub>0.67</sub>Li<sub>0.05</sub>Ni<sub>0.28</sub>Mn<sub>0.67</sub>O<sub>2</sub> cathode demonstrates superior sodium storage performance, delivering a reversible capacity of 144.6 mAh g<sup>–1</sup> at 0.1C with 91.8% capacity retention after 50 cycles and sustaining 82.6% capacity retention after 500 cycles at 5C. This research offers a viable approach for creating high-performance P2-type cathodes for advanced SIBs.</p>","PeriodicalId":35,"journal":{"name":"Energy & Fuels","volume":"39 14","pages":"7110–7118 7110–7118"},"PeriodicalIF":5.2000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Fuels","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.energyfuels.5c00564","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

P2-type transition-metal oxides as promising cathode materials for sodium-ion batteries (SIBs) possess unique layered structures and superior electrochemical properties, but suffer from the kinetic retardation and structural instability caused by problems such as Na+/vacancy ordering, Jahn–Teller distortion, and irreversible P2–O2 phase transition. Herein, we report the fabrication of a P2-type Na0.67Li0.05Ni0.28Mn0.67O2 cathode material via a simple solid-state method, using micro-octahedral Mn2O3 as Mn-precursor with simultaneous Li-doping. The combined adoptions of micro-octahedral Mn2O3 precursors and Li-doping effectively enhance the structural stability of the Na0.67Li0.05Ni0.28Mn0.67O2 cathode by inhibiting the Jahn–Teller distortion and suppressing the phase transition of P2–O2 and increase the electronic conductivity and ion diffusion coefficient during charging and discharging processes. Consequently, the as-fabricated Na0.67Li0.05Ni0.28Mn0.67O2 cathode demonstrates superior sodium storage performance, delivering a reversible capacity of 144.6 mAh g–1 at 0.1C with 91.8% capacity retention after 50 cycles and sustaining 82.6% capacity retention after 500 cycles at 5C. This research offers a viable approach for creating high-performance P2-type cathodes for advanced SIBs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy & Fuels
Energy & Fuels 工程技术-工程:化工
CiteScore
9.20
自引率
13.20%
发文量
1101
审稿时长
2.1 months
期刊介绍: Energy & Fuels publishes reports of research in the technical area defined by the intersection of the disciplines of chemistry and chemical engineering and the application domain of non-nuclear energy and fuels. This includes research directed at the formation of, exploration for, and production of fossil fuels and biomass; the properties and structure or molecular composition of both raw fuels and refined products; the chemistry involved in the processing and utilization of fuels; fuel cells and their applications; and the analytical and instrumental techniques used in investigations of the foregoing areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信