{"title":"A generalized friction law depicting the thermal effects at chemical bonding interface","authors":"Yang Wang, Yexin Li, Xiao Huang, Jingxiang Xu, Yusuke Ootani, Nobuki Ozawa, Koshi Adachi, Linmao Qian, Wen Wang, Momoji Kubo","doi":"10.26599/frict.2025.9441031","DOIUrl":null,"url":null,"abstract":"<p>Non-empirical law depicting how atomic-scale friction behaves is crucial for facilitating the practical design of tribosystems. However, progress in developing a practically usable friction law has stagnated because atomic-scale friction arises from the continuous formation and rupture of interfacial chemical bonds, and such interfacial chemical reactions are difficult to measure precisely. Here, we propose a usable friction law for atomic-scale contact by using large-scale atomistic simulations to correctly measure the interfacial chemical reactions of a realistic rough surface. This friction model is effective to predict how atomic-scale friction force varies with temperature, sliding velocity, and load. As a special example, our model predicts velocity-related mountain-like temperature dependence of friction, and this prediction result is then carefully validated by comparison with ultra-high-vacuum atomic force microscopy (AFM) experiments.</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"241 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.26599/frict.2025.9441031","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Non-empirical law depicting how atomic-scale friction behaves is crucial for facilitating the practical design of tribosystems. However, progress in developing a practically usable friction law has stagnated because atomic-scale friction arises from the continuous formation and rupture of interfacial chemical bonds, and such interfacial chemical reactions are difficult to measure precisely. Here, we propose a usable friction law for atomic-scale contact by using large-scale atomistic simulations to correctly measure the interfacial chemical reactions of a realistic rough surface. This friction model is effective to predict how atomic-scale friction force varies with temperature, sliding velocity, and load. As a special example, our model predicts velocity-related mountain-like temperature dependence of friction, and this prediction result is then carefully validated by comparison with ultra-high-vacuum atomic force microscopy (AFM) experiments.
期刊介绍:
Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as:
Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc.
Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc.
Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc.
Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc.
Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc.
Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.