Ji-il Kim, Kent Imaizumi, Ovidiu Jurjuț, Kevin W. Kelley, Dong Wang, Mayuri Vijay Thete, Zuzana Hudacova, Neal D. Amin, Rebecca J. Levy, Grégory Scherrer, Sergiu P. Pașca
{"title":"Human assembloid model of the ascending neural sensory pathway","authors":"Ji-il Kim, Kent Imaizumi, Ovidiu Jurjuț, Kevin W. Kelley, Dong Wang, Mayuri Vijay Thete, Zuzana Hudacova, Neal D. Amin, Rebecca J. Levy, Grégory Scherrer, Sergiu P. Pașca","doi":"10.1038/s41586-025-08808-3","DOIUrl":null,"url":null,"abstract":"<p>Somatosensory pathways convey crucial information about pain, touch, itch and body part movement from peripheral organs to the central nervous system<sup>1,2</sup>. Despite substantial needs to understand how these pathways assemble and to develop pain therapeutics, clinical translation remains challenging. This is probably related to species-specific features and the lack of in vitro models of the polysynaptic pathway. Here we established a human ascending somatosensory assembloid (hASA), a four-part assembloid generated from human pluripotent stem cells that integrates somatosensory, spinal, thalamic and cortical organoids to model the spinothalamic pathway. Transcriptomic profiling confirmed the presence of key cell types of this circuit. Rabies tracing and calcium imaging showed that sensory neurons connect to dorsal spinal cord neurons, which further connect to thalamic neurons. Following noxious chemical stimulation, calcium imaging of hASA demonstrated a coordinated response. In addition, extracellular recordings and imaging revealed synchronized activity across the assembloid. Notably, loss of the sodium channel Na<sub>V</sub>1.7, which causes pain insensitivity, disrupted synchrony across hASA. By contrast, a gain-of-function <i>SCN9A</i> variant associated with extreme pain disorder induced hypersynchrony. These experiments demonstrated the ability to functionally assemble the essential components of the human sensory pathway, which could accelerate our understanding of sensory circuits and facilitate therapeutic development.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":"108 1","pages":""},"PeriodicalIF":50.5000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-025-08808-3","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Somatosensory pathways convey crucial information about pain, touch, itch and body part movement from peripheral organs to the central nervous system1,2. Despite substantial needs to understand how these pathways assemble and to develop pain therapeutics, clinical translation remains challenging. This is probably related to species-specific features and the lack of in vitro models of the polysynaptic pathway. Here we established a human ascending somatosensory assembloid (hASA), a four-part assembloid generated from human pluripotent stem cells that integrates somatosensory, spinal, thalamic and cortical organoids to model the spinothalamic pathway. Transcriptomic profiling confirmed the presence of key cell types of this circuit. Rabies tracing and calcium imaging showed that sensory neurons connect to dorsal spinal cord neurons, which further connect to thalamic neurons. Following noxious chemical stimulation, calcium imaging of hASA demonstrated a coordinated response. In addition, extracellular recordings and imaging revealed synchronized activity across the assembloid. Notably, loss of the sodium channel NaV1.7, which causes pain insensitivity, disrupted synchrony across hASA. By contrast, a gain-of-function SCN9A variant associated with extreme pain disorder induced hypersynchrony. These experiments demonstrated the ability to functionally assemble the essential components of the human sensory pathway, which could accelerate our understanding of sensory circuits and facilitate therapeutic development.
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.