Layer-by-layer mechanism of the MAX phase to MXene transformation

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matter Pub Date : 2025-06-04 DOI:10.1016/j.matt.2025.102092
Mark Anayee , Ruocun (John) Wang , Marley Downes , Stefano Ippolito , Yury Gogotsi
{"title":"Layer-by-layer mechanism of the MAX phase to MXene transformation","authors":"Mark Anayee ,&nbsp;Ruocun (John) Wang ,&nbsp;Marley Downes ,&nbsp;Stefano Ippolito ,&nbsp;Yury Gogotsi","doi":"10.1016/j.matt.2025.102092","DOIUrl":null,"url":null,"abstract":"<div><div>MXenes are the fastest growing family of two-dimensional (2D) materials with potential for applications from energy storage to biomedicine, sensing, and electromagnetic shielding. Despite significant progress in MXene synthesis through selective etching of layered MAX phase precursors, limited understanding of the fundamental etching mechanism and kinetics hinders rational optimization of the process. Here, we monitored the etching process using <em>in situ</em> and <em>ex situ</em> techniques at the single-particle and ensemble levels. Our work shows that etching nucleation is instantaneous and etching occurs layer by layer. Through analytical modeling, we found that etching of V<sub>2</sub>AlC is diffusion-limited. In contrast, etching of Ti<sub>2</sub>AlC and Ti<sub>3</sub>AlC<sub>2</sub> is reaction-interface-limited, with an additional surface reaction limitation for Ti<sub>3</sub>AlC<sub>2</sub> accounting for more than one-quarter of the total etching time. Overall, our work provides significant insights into the MAX phase etching mechanism and kinetics and an overview of the tools and techniques available to investigate etchable layered materials.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"8 6","pages":"Article 102092"},"PeriodicalIF":17.3000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590238525001353","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

MXenes are the fastest growing family of two-dimensional (2D) materials with potential for applications from energy storage to biomedicine, sensing, and electromagnetic shielding. Despite significant progress in MXene synthesis through selective etching of layered MAX phase precursors, limited understanding of the fundamental etching mechanism and kinetics hinders rational optimization of the process. Here, we monitored the etching process using in situ and ex situ techniques at the single-particle and ensemble levels. Our work shows that etching nucleation is instantaneous and etching occurs layer by layer. Through analytical modeling, we found that etching of V2AlC is diffusion-limited. In contrast, etching of Ti2AlC and Ti3AlC2 is reaction-interface-limited, with an additional surface reaction limitation for Ti3AlC2 accounting for more than one-quarter of the total etching time. Overall, our work provides significant insights into the MAX phase etching mechanism and kinetics and an overview of the tools and techniques available to investigate etchable layered materials.

Abstract Image

Abstract Image

MAX相向MXene相变的逐层机制
MXenes是增长最快的二维(2D)材料家族,具有从能量存储到生物医学,传感和电磁屏蔽的潜在应用。尽管通过层状MAX相前驱体的选择性蚀刻合成MXene取得了重大进展,但对基本蚀刻机制和动力学的了解有限,阻碍了该工艺的合理优化。在这里,我们使用原位和非原位技术在单粒子和系综水平上监测蚀刻过程。我们的工作表明,刻蚀成核是瞬时的,刻蚀是逐层发生的。通过分析模型,我们发现V2AlC的蚀刻是扩散受限的。相比之下,Ti2AlC和Ti3AlC2的蚀刻受到反应界面的限制,Ti3AlC2的附加表面反应限制占总蚀刻时间的四分之一以上。总的来说,我们的工作为MAX相蚀刻机制和动力学提供了重要的见解,并概述了可用于研究可蚀刻层状材料的工具和技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信