Xinfei Fan , Xin Dong , Yanming Liu , Baogang Zhao , Chengwen Song , Chunxia Qiu , Yuanlu Xu
{"title":"Functionalized inorganic hydrogel-based membrane for synergistic oil/water separation and catalytic degradation","authors":"Xinfei Fan , Xin Dong , Yanming Liu , Baogang Zhao , Chengwen Song , Chunxia Qiu , Yuanlu Xu","doi":"10.1016/j.watres.2025.123617","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogel-modified superwetting membranes typically exhibit remarkable resistance to oil fouling during oil/water separation but suffer from unfavorable stability due to the inevitable swelling and exfoliation. A functionalized inorganic hydrogel-based membrane (TIH@PVDF) with satisfactory durability was proposed for the first time to ingeniously integrate excellent anti-oil fouling and high flux recovery (<em>FRR</em>) for efficient oil/water separation. The TIH@PVDF membrane exhibited a high separation efficiency of over 99 % for oil-in-water emulsions (including liquid paraffin, isooctane, and hexadecane). Owing to the synergistic effect of hydration and catalytic ability from inorganic hydrogel, a <em>FRR</em> of 97.9 % was achieved by catalytic regeneration after seven cycles of oil/water separation, outperforming hydraulic cleaning (90.6 %). Most importantly, the TIH@PVDF membrane demonstrates outstanding capability in separating actual oil field-produced water, indicating its potential for practical application. Meanwhile, the existence of metallic elements in the inorganic hydrogel endowed the TIH@PVDF membrane with sufficient active sites to produce O<sub>2</sub><sup>•-</sup> and <sup>1</sup>O<sub>2</sub> via peroxymonosulfate (PMS) activation towards organics decomposition. The TIH@PVDF membrane presented a satisfactory removal efficiency (99.1 %) of sulfamethoxazole during a single-pass catalytic separation process. This research may revolutionize the advancement of inorganic hydrogel-based catalytic membranes for oil/water separation and wastewater decontamination.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"281 ","pages":"Article 123617"},"PeriodicalIF":11.4000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135425005287","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogel-modified superwetting membranes typically exhibit remarkable resistance to oil fouling during oil/water separation but suffer from unfavorable stability due to the inevitable swelling and exfoliation. A functionalized inorganic hydrogel-based membrane (TIH@PVDF) with satisfactory durability was proposed for the first time to ingeniously integrate excellent anti-oil fouling and high flux recovery (FRR) for efficient oil/water separation. The TIH@PVDF membrane exhibited a high separation efficiency of over 99 % for oil-in-water emulsions (including liquid paraffin, isooctane, and hexadecane). Owing to the synergistic effect of hydration and catalytic ability from inorganic hydrogel, a FRR of 97.9 % was achieved by catalytic regeneration after seven cycles of oil/water separation, outperforming hydraulic cleaning (90.6 %). Most importantly, the TIH@PVDF membrane demonstrates outstanding capability in separating actual oil field-produced water, indicating its potential for practical application. Meanwhile, the existence of metallic elements in the inorganic hydrogel endowed the TIH@PVDF membrane with sufficient active sites to produce O2•- and 1O2 via peroxymonosulfate (PMS) activation towards organics decomposition. The TIH@PVDF membrane presented a satisfactory removal efficiency (99.1 %) of sulfamethoxazole during a single-pass catalytic separation process. This research may revolutionize the advancement of inorganic hydrogel-based catalytic membranes for oil/water separation and wastewater decontamination.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.