Computer vision–guided rapid and precise automated cranial microsurgeries in mice

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Zahra S. Navabi, Ryan Peters, Beatrice Gulner, Arun Cherkkil, Eunsong Ko, Farnoosh Dadashi, Jacob O. Brien, Michael Feldkamp, Suhasa B. Kodandaramaiah
{"title":"Computer vision–guided rapid and precise automated cranial microsurgeries in mice","authors":"Zahra S. Navabi,&nbsp;Ryan Peters,&nbsp;Beatrice Gulner,&nbsp;Arun Cherkkil,&nbsp;Eunsong Ko,&nbsp;Farnoosh Dadashi,&nbsp;Jacob O. Brien,&nbsp;Michael Feldkamp,&nbsp;Suhasa B. Kodandaramaiah","doi":"10.1126/sciadv.adt9693","DOIUrl":null,"url":null,"abstract":"<div >A common procedure that allows interfacing with the brain is cranial microsurgery, wherein small to large craniotomies are performed on the overlying skull for insertion of neural interfaces or implantation of optically clear windows for long-term cranial observation. Performing craniotomies requires skill, time, and precision to avoid damaging the brain and dura. Here, we present a computer vision–guided craniotomy robot (CV-Craniobot) that uses machine learning to accurately estimate the dorsal skull anatomy from optical coherence tomography images. Instantaneous information of skull morphology is used by a robotic mill to rapidly and precisely remove the skull from a desired craniotomy location. We show that the CV-Craniobot can perform small (2- to 4-millimeter diameter) craniotomies with near 100% success rates within 2 minutes and large craniotomies encompassing most of the dorsal cortex in less than 10 minutes. Thus, the CV-Craniobot enables rapid and precise craniotomies, reducing surgery time compared to human practitioners and eliminating the need for long training.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 15","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adt9693","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adt9693","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

A common procedure that allows interfacing with the brain is cranial microsurgery, wherein small to large craniotomies are performed on the overlying skull for insertion of neural interfaces or implantation of optically clear windows for long-term cranial observation. Performing craniotomies requires skill, time, and precision to avoid damaging the brain and dura. Here, we present a computer vision–guided craniotomy robot (CV-Craniobot) that uses machine learning to accurately estimate the dorsal skull anatomy from optical coherence tomography images. Instantaneous information of skull morphology is used by a robotic mill to rapidly and precisely remove the skull from a desired craniotomy location. We show that the CV-Craniobot can perform small (2- to 4-millimeter diameter) craniotomies with near 100% success rates within 2 minutes and large craniotomies encompassing most of the dorsal cortex in less than 10 minutes. Thus, the CV-Craniobot enables rapid and precise craniotomies, reducing surgery time compared to human practitioners and eliminating the need for long training.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信