Discovery of diverse and high-quality mRNA capping enzymes through a language model–enabled platform

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Tianze Wang, Bowen R. Qin, Sihong Li, Zimo Wang, Xuejian Li, Yuanxu Jiang, Chenrui Qin, Qi Ouyang, Chunbo Lou, Long Qian
{"title":"Discovery of diverse and high-quality mRNA capping enzymes through a language model–enabled platform","authors":"Tianze Wang,&nbsp;Bowen R. Qin,&nbsp;Sihong Li,&nbsp;Zimo Wang,&nbsp;Xuejian Li,&nbsp;Yuanxu Jiang,&nbsp;Chenrui Qin,&nbsp;Qi Ouyang,&nbsp;Chunbo Lou,&nbsp;Long Qian","doi":"10.1126/sciadv.adt0402","DOIUrl":null,"url":null,"abstract":"<div >Mining and expanding high-quality genetic parts for synthetic biology and bioengineering are urgent needs in the research and development of next-generation biotechnology. However, gene mining has relied on sequence homology or ample expert knowledge, which fundamentally limits the establishment of a comprehensive genetic part catalog. In this work, we propose SYMPLEX (synthetic biological part mining platform by large language model–enabled knowledge extraction), a universal gene-mining platform based on large language models. We applied SYMPLEX to mine enzymes responsible for messenger RNA (mRNA) capping, a key process in eukaryotic posttranscriptional modification, and obtained thousands of diverse candidates with traceable evidence from biomedical literature and databases. Of the 46 experimentally tested integral capping enzyme candidates, 14 demonstrated in vivo cross-species capping activity, and 2 displayed superior in vitro activity over the commercial vaccinia capping enzymes currently used in mRNA vaccine production. SYMPLEX provides a distinct paradigm for functional gene mining and offers powerful tools to facilitate knowledge discovery in fundamental research.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 15","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adt0402","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adt0402","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Mining and expanding high-quality genetic parts for synthetic biology and bioengineering are urgent needs in the research and development of next-generation biotechnology. However, gene mining has relied on sequence homology or ample expert knowledge, which fundamentally limits the establishment of a comprehensive genetic part catalog. In this work, we propose SYMPLEX (synthetic biological part mining platform by large language model–enabled knowledge extraction), a universal gene-mining platform based on large language models. We applied SYMPLEX to mine enzymes responsible for messenger RNA (mRNA) capping, a key process in eukaryotic posttranscriptional modification, and obtained thousands of diverse candidates with traceable evidence from biomedical literature and databases. Of the 46 experimentally tested integral capping enzyme candidates, 14 demonstrated in vivo cross-species capping activity, and 2 displayed superior in vitro activity over the commercial vaccinia capping enzymes currently used in mRNA vaccine production. SYMPLEX provides a distinct paradigm for functional gene mining and offers powerful tools to facilitate knowledge discovery in fundamental research.

Abstract Image

通过支持语言模型的平台发现多样化和高质量的 mRNA 封口酶
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信