{"title":"Discovery of diverse and high-quality mRNA capping enzymes through a language model–enabled platform","authors":"Tianze Wang, Bowen R. Qin, Sihong Li, Zimo Wang, Xuejian Li, Yuanxu Jiang, Chenrui Qin, Qi Ouyang, Chunbo Lou, Long Qian","doi":"10.1126/sciadv.adt0402","DOIUrl":null,"url":null,"abstract":"<div >Mining and expanding high-quality genetic parts for synthetic biology and bioengineering are urgent needs in the research and development of next-generation biotechnology. However, gene mining has relied on sequence homology or ample expert knowledge, which fundamentally limits the establishment of a comprehensive genetic part catalog. In this work, we propose SYMPLEX (synthetic biological part mining platform by large language model–enabled knowledge extraction), a universal gene-mining platform based on large language models. We applied SYMPLEX to mine enzymes responsible for messenger RNA (mRNA) capping, a key process in eukaryotic posttranscriptional modification, and obtained thousands of diverse candidates with traceable evidence from biomedical literature and databases. Of the 46 experimentally tested integral capping enzyme candidates, 14 demonstrated in vivo cross-species capping activity, and 2 displayed superior in vitro activity over the commercial vaccinia capping enzymes currently used in mRNA vaccine production. SYMPLEX provides a distinct paradigm for functional gene mining and offers powerful tools to facilitate knowledge discovery in fundamental research.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 15","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adt0402","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adt0402","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Mining and expanding high-quality genetic parts for synthetic biology and bioengineering are urgent needs in the research and development of next-generation biotechnology. However, gene mining has relied on sequence homology or ample expert knowledge, which fundamentally limits the establishment of a comprehensive genetic part catalog. In this work, we propose SYMPLEX (synthetic biological part mining platform by large language model–enabled knowledge extraction), a universal gene-mining platform based on large language models. We applied SYMPLEX to mine enzymes responsible for messenger RNA (mRNA) capping, a key process in eukaryotic posttranscriptional modification, and obtained thousands of diverse candidates with traceable evidence from biomedical literature and databases. Of the 46 experimentally tested integral capping enzyme candidates, 14 demonstrated in vivo cross-species capping activity, and 2 displayed superior in vitro activity over the commercial vaccinia capping enzymes currently used in mRNA vaccine production. SYMPLEX provides a distinct paradigm for functional gene mining and offers powerful tools to facilitate knowledge discovery in fundamental research.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.