Advances in Perovskite-Based Neuromorphic Computing Devices

IF 5.8 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nanoscale Pub Date : 2025-04-09 DOI:10.1039/d5nr00335k
Yixin Cao, Yuanxi Li, Ganggui Zhu, Linhui Li, Guohua Lu, Enggee Lim, Wenqing Liu, Yina Liu, Chun Zhao, Zhen Wen
{"title":"Advances in Perovskite-Based Neuromorphic Computing Devices","authors":"Yixin Cao, Yuanxi Li, Ganggui Zhu, Linhui Li, Guohua Lu, Enggee Lim, Wenqing Liu, Yina Liu, Chun Zhao, Zhen Wen","doi":"10.1039/d5nr00335k","DOIUrl":null,"url":null,"abstract":"Neuromorphic computing devices, inspired by the architecture and functionality of the human brain, offer a promising solution to the limitations imposed by the von Neumann bottleneck on contemporary computing systems. Perovskite materials are widely used in the photosensitive layer of neuromorphic computing devices due to their high light absorption coefficient, excellent carrier mobility. Here, we summarise the latest research progress on neural morphology computing devices based on perovskite materials with different structures and summarise different application scenarios. Finally, we discussed the issues that still need to be addressed and looked forward to the future development of neural morphology calculations based on perovskite materials.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"25 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5nr00335k","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Neuromorphic computing devices, inspired by the architecture and functionality of the human brain, offer a promising solution to the limitations imposed by the von Neumann bottleneck on contemporary computing systems. Perovskite materials are widely used in the photosensitive layer of neuromorphic computing devices due to their high light absorption coefficient, excellent carrier mobility. Here, we summarise the latest research progress on neural morphology computing devices based on perovskite materials with different structures and summarise different application scenarios. Finally, we discussed the issues that still need to be addressed and looked forward to the future development of neural morphology calculations based on perovskite materials.
基于钙钛矿的神经形态计算设备的研究进展
受人脑结构和功能启发的神经形态计算设备,为解决冯·诺伊曼瓶颈对当代计算系统的限制提供了一个有希望的解决方案。钙钛矿材料因其高的光吸收系数和优异的载流子迁移率而广泛应用于神经形态计算器件的光敏层。本文综述了基于不同结构钙钛矿材料的神经形态计算器件的最新研究进展,并总结了不同的应用场景。最后,我们讨论了仍需解决的问题,并展望了基于钙钛矿材料的神经形态学计算的未来发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信