Multimetallic assembly of concave-shaped rectangular Mn4 clusters as efficient hydrogen evolution electrocatalysts†

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Chandan Sarkar, Aditi De, Arindam Gupta, Ranjay K. Tiwari, Tapan Sarkar, J. N. Behera, Sanjit Konar, Subrata Kundu and Manindranath Bera
{"title":"Multimetallic assembly of concave-shaped rectangular Mn4 clusters as efficient hydrogen evolution electrocatalysts†","authors":"Chandan Sarkar, Aditi De, Arindam Gupta, Ranjay K. Tiwari, Tapan Sarkar, J. N. Behera, Sanjit Konar, Subrata Kundu and Manindranath Bera","doi":"10.1039/D5TA01854D","DOIUrl":null,"url":null,"abstract":"<p >Although great efforts have been dedicated to the investigation of active, stable and cost-effective electrocatalysts, only a few noteworthy breakthroughs have been accomplished until now. In this perspective, cluster-based molecular systems in which composition can be compared with electrocatalytic activity remain under-explored primarily because of the synthetic challenges. Thus, exploring novel electrocatalysts for water splitting with enhanced catalytic activity and stability is still a leading task. Manganese-grafted molecular clusters have garnered interest as models to design more precise replicas, which, in turn, provide a better perception of the probable pathways used in electrocatalysis. In this research, the design and synthesis of a novel class of fascinating concave-shaped Mn<small><sub>4</sub></small> cluster materials of molecular formula Na[Mn<small><sub>4</sub></small>(L)<small><sub>2</sub></small>(μ-O)(μ-OH)(μ-<em>p</em>-O<small><sub>2</sub></small>CC<small><sub>6</sub></small>H<small><sub>4</sub></small>(Cl))<small><sub>2</sub></small>](ClO<small><sub>4</sub></small>)<small><sub>2</sub></small>(CH<small><sub>3</sub></small>OH)(H<small><sub>2</sub></small>O) (<strong>1</strong>), Na[Mn<small><sub>4</sub></small>(L)<small><sub>2</sub></small>(μ-O)(μ-OH)(μ-<em>p</em>-O<small><sub>2</sub></small>CC<small><sub>6</sub></small>H<small><sub>4</sub></small>(CH<small><sub>3</sub></small>))<small><sub>2</sub></small>](ClO<small><sub>4</sub></small>)<small><sub>2</sub></small>(CH<small><sub>3</sub></small>OH)(H<small><sub>2</sub></small>O)<small><sub>2</sub></small> (<strong>2</strong>) and Na[Mn<small><sub>4</sub></small>(L)<small><sub>2</sub></small>(μ-O)(μ-OH)(μ-<em>p</em>-O<small><sub>2</sub></small>CC<small><sub>6</sub></small>H<small><sub>4</sub></small>(NO<small><sub>2</sub></small>))<small><sub>2</sub></small>](ClO<small><sub>4</sub></small>)<small><sub>2</sub></small>(H<small><sub>2</sub></small>O) (<strong>3</strong>), and their evaluation of magnetic exchange interactions and electrocatalytic efficiency for water splitting to generate molecular hydrogen (H<small><sub>3</sub></small>L = <em>N</em>,<em>N</em>′-bis[2-carboxybenzomethyl]-<em>N</em>,<em>N</em>′-bis[2-pyridylmethyl]-1,3-diaminopropan-2-ol; <em>p</em>-C<small><sub>6</sub></small>H<small><sub>4</sub></small>(Cl)(CO<small><sub>2</sub></small>H) = <em>para</em>-chlorobenzoic acid; <em>p</em>-C<small><sub>6</sub></small>H<small><sub>4</sub></small>(CH<small><sub>3</sub></small>)(CO<small><sub>2</sub></small>H) = <em>para</em>-methylbenzoic acid; <em>p</em>-C<small><sub>6</sub></small>H<small><sub>4</sub></small>(NO<small><sub>2</sub></small>)(CO<small><sub>2</sub></small>H) = <em>para</em>-nitrobenzoic acid) have been described. Clusters <strong>1–3</strong> have been characterized by a combined approach of microanalysis, FTIR, UV-Vis, PXRD, FESEM and single crystal X-ray crystallography. The X-ray crystallographic analyses of <strong>1–3</strong> disclose that their molecular structures consist of two crystallographically equivalent dimeric [Mn<small><sub>2</sub></small>L]<small><sup>3+</sup></small> units, interconnected by one bridging oxide and hydroxide, and two bridging <em>para</em>-substituted benzoate linkers, forming concave-shaped rectangular motifs. Clusters <strong>1–3</strong> show the coexistence of ferromagnetic and antiferromagnetic exchange interactions as disclosed by low-temperature magnetic susceptibility studies, and the spin ground state (<em>S</em> = 2) of the clusters is correlated with the individuality of ancillary bridging ligands and structural arrangements of the [Mn<small><sub>4</sub></small>(L)<small><sub>2</sub></small>(μ-O)(μ-OH)(μ-<em>p</em>-O<small><sub>2</sub></small>CC<small><sub>6</sub></small>H<small><sub>4</sub></small>(R))<small><sub>2</sub></small>] cores [R = Cl (<strong>1</strong>), CH<small><sub>3</sub></small> (<strong>2</strong>) and NO<small><sub>2</sub></small> (<strong>3</strong>)]. All three Mn<small><sub>4</sub></small> clusters exhibit excellent electrocatalytic activity for the hydrogen evolution reaction (HER) with overpotential values of 284, 377 and 323 mV, and Tafel slopes of 87.33, 201.33 and 182.24 mV dec<small><sup>−1</sup></small> for <strong>1</strong>, <strong>2</strong> and <strong>3</strong>, respectively, to achieve a current density of 10 mA cm<small><sup>−2</sup></small>. As revealed by chronoamperometric investigation, <strong>1–3</strong> show outstanding stability with insignificant degradation of current density. Density functional theory (DFT) computations were employed to propose the mechanistic aspects of HER studies, suggesting that the Mn(<small>III</small>)–O<small><sub>oxide</sub></small>–Mn(<small>III</small>) connectivity is the active site for the HER. To our knowledge, <strong>1–3</strong> represent the first examples of Mn<small><sup>III</sup></small><small><sub>4</sub></small>-based molecular clusters showing excellent electrocatalytic HER performance for the generation of molecular hydrogen.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 22","pages":" 16575-16595"},"PeriodicalIF":10.7000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d5ta01854d","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Although great efforts have been dedicated to the investigation of active, stable and cost-effective electrocatalysts, only a few noteworthy breakthroughs have been accomplished until now. In this perspective, cluster-based molecular systems in which composition can be compared with electrocatalytic activity remain under-explored primarily because of the synthetic challenges. Thus, exploring novel electrocatalysts for water splitting with enhanced catalytic activity and stability is still a leading task. Manganese-grafted molecular clusters have garnered interest as models to design more precise replicas, which, in turn, provide a better perception of the probable pathways used in electrocatalysis. In this research, the design and synthesis of a novel class of fascinating concave-shaped Mn4 cluster materials of molecular formula Na[Mn4(L)2(μ-O)(μ-OH)(μ-p-O2CC6H4(Cl))2](ClO4)2(CH3OH)(H2O) (1), Na[Mn4(L)2(μ-O)(μ-OH)(μ-p-O2CC6H4(CH3))2](ClO4)2(CH3OH)(H2O)2 (2) and Na[Mn4(L)2(μ-O)(μ-OH)(μ-p-O2CC6H4(NO2))2](ClO4)2(H2O) (3), and their evaluation of magnetic exchange interactions and electrocatalytic efficiency for water splitting to generate molecular hydrogen (H3L = N,N′-bis[2-carboxybenzomethyl]-N,N′-bis[2-pyridylmethyl]-1,3-diaminopropan-2-ol; p-C6H4(Cl)(CO2H) = para-chlorobenzoic acid; p-C6H4(CH3)(CO2H) = para-methylbenzoic acid; p-C6H4(NO2)(CO2H) = para-nitrobenzoic acid) have been described. Clusters 1–3 have been characterized by a combined approach of microanalysis, FTIR, UV-Vis, PXRD, FESEM and single crystal X-ray crystallography. The X-ray crystallographic analyses of 1–3 disclose that their molecular structures consist of two crystallographically equivalent dimeric [Mn2L]3+ units, interconnected by one bridging oxide and hydroxide, and two bridging para-substituted benzoate linkers, forming concave-shaped rectangular motifs. Clusters 1–3 show the coexistence of ferromagnetic and antiferromagnetic exchange interactions as disclosed by low-temperature magnetic susceptibility studies, and the spin ground state (S = 2) of the clusters is correlated with the individuality of ancillary bridging ligands and structural arrangements of the [Mn4(L)2(μ-O)(μ-OH)(μ-p-O2CC6H4(R))2] cores [R = Cl (1), CH3 (2) and NO2 (3)]. All three Mn4 clusters exhibit excellent electrocatalytic activity for the hydrogen evolution reaction (HER) with overpotential values of 284, 377 and 323 mV, and Tafel slopes of 87.33, 201.33 and 182.24 mV dec−1 for 1, 2 and 3, respectively, to achieve a current density of 10 mA cm−2. As revealed by chronoamperometric investigation, 1–3 show outstanding stability with insignificant degradation of current density. Density functional theory (DFT) computations were employed to propose the mechanistic aspects of HER studies, suggesting that the Mn(III)–Ooxide–Mn(III) connectivity is the active site for the HER. To our knowledge, 1–3 represent the first examples of MnIII4-based molecular clusters showing excellent electrocatalytic HER performance for the generation of molecular hydrogen.

Abstract Image

凹形矩形Mn4簇的多金属组装作为高效析氢电催化剂
从这个角度来看,由于合成方面的挑战,基于簇的分子系统的组成可以与电催化活性进行比较,但仍未得到充分的探索。因此,探索具有更高催化活性和稳定性的新型水裂解电催化剂仍然是一个重要的任务。锰接枝的分子簇已经引起了人们的兴趣,可以作为模型来设计更精确的复制品,这反过来又可以更好地理解电催化中可能使用的途径。本研究设计合成了一类新型的引人注目的凹形Mn4簇材料,分子式为Na[Mn4(L)2(μ-O)(μ-OH)(μ-p-O2CC6H4(Cl))2](ClO4)2(CH3OH)(H2O)(1)、Na[Mn4(L)2(μ-O)(μ-OH)(μ-p-O2CC6H4(CH3))2](ClO4)2(CH3OH)(H2O)2(2)和Na[Mn4(L)2(μ-O)(μ-OH)(μ-p-O2CC6H4(NO2))2](ClO4)2(H2O)(3)。以及水裂解生成氢分子(H3L = N,N′-双[2-羧基苯甲乙基]-N,N′-双[2-吡啶基甲基]-1,3-二氨基丙烯-2-醇)的磁交换相互作用和电催化效果的评价;p-C6H4(Cl)(CO2H) =对氯苯甲酸;p-C6H4(CH3)(CO2H) =对甲基苯甲酸;描述了p-C6H4(NO2)(CO2H) =对硝基苯甲酸。通过微量分析、FTIR、UV-Vis、PXRD、FESEM和单晶x射线晶体学等方法对簇1-3进行了表征。对1-3的x射线晶体学分析表明,它们的分子结构由两个晶体结构相似的二聚体[Mn2L]3+单元组成,由一个桥接氧化物和氢氧化物连接,以及两个桥接对取代苯甲酸酯连接剂连接,形成凹形矩形基序。低温磁化率研究表明,簇1-3表现出铁磁性和反铁磁性交换相互作用共存,簇的自旋基态(S = 2)与辅助桥接配体的个性和[Mn4(L)2(μ-O)(μ-OH)(μ-p-O2CC6H4(R))2]核[R = Cl (1), CH3(2)和NO2(3)]的结构排列有关。三种Mn4簇均表现出优异的析氢反应电催化活性,1、2和3的过电位分别为284、377和323 mV, Tafel斜率分别为184.34、231.22和209.05 mV/dec,电流密度为10 mA/cm2。计时安培研究表明,1-3具有出色的稳定性,电流密度的退化不明显。利用密度泛函理论(DFT)计算提出了HER研究的机制方面,表明Mn(III)- oooxide -Mn(III)连接是HER的活性位点。据我们所知,1-3代表了基于mniii4的分子簇在氢分子生成方面表现出优异电催化HER性能的第一个例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信