Universal photonic artificial intelligence acceleration

IF 50.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Nature Pub Date : 2025-04-09 DOI:10.1038/s41586-025-08854-x
Sufi R. Ahmed, Reza Baghdadi, Mikhail Bernadskiy, Nate Bowman, Ryan Braid, Jim Carr, Chen Chen, Pietro Ciccarella, Matthew Cole, John Cooke, Kishor Desai, Carlos Dorta, Jonathan Elmhurst, Bryce Gardiner, Elliot Greenwald, Shashank Gupta, Parry Husbands, Brian Jones, Anthony Kopa, Ho John Lee, Arulselvan Madhavan, Adam Mendrela, Nicholas Moore, Lakshmi Nair, Aditya Om, Subie Patel, Rutayan Patro, Rob Pellowski, Esha Radhakrishnani, Sandeep Sane, Nicholas Sarkis, Joe Stadolnik, Mykhailo Tymchenko, Gongyu Wang, Kurt Winikka, Alexandra Wleklinski, Josh Zelman, Richard Ho, Ritesh Jain, Ayon Basumallik, Darius Bunandar, Nicholas C. Harris
{"title":"Universal photonic artificial intelligence acceleration","authors":"Sufi R. Ahmed, Reza Baghdadi, Mikhail Bernadskiy, Nate Bowman, Ryan Braid, Jim Carr, Chen Chen, Pietro Ciccarella, Matthew Cole, John Cooke, Kishor Desai, Carlos Dorta, Jonathan Elmhurst, Bryce Gardiner, Elliot Greenwald, Shashank Gupta, Parry Husbands, Brian Jones, Anthony Kopa, Ho John Lee, Arulselvan Madhavan, Adam Mendrela, Nicholas Moore, Lakshmi Nair, Aditya Om, Subie Patel, Rutayan Patro, Rob Pellowski, Esha Radhakrishnani, Sandeep Sane, Nicholas Sarkis, Joe Stadolnik, Mykhailo Tymchenko, Gongyu Wang, Kurt Winikka, Alexandra Wleklinski, Josh Zelman, Richard Ho, Ritesh Jain, Ayon Basumallik, Darius Bunandar, Nicholas C. Harris","doi":"10.1038/s41586-025-08854-x","DOIUrl":null,"url":null,"abstract":"Over the past decade, photonics research has explored accelerated tensor operations, foundational to artificial intelligence (AI) and deep learning1–4, as a path towards enhanced energy efficiency and performance5–14. The field is centrally motivated by finding alternative technologies to extend computational progress in a post-Moore’s law and Dennard scaling era15–19. Despite these advances, no photonic chip has achieved the precision necessary for practical AI applications, and demonstrations have been limited to simplified benchmark tasks. Here we introduce a photonic AI processor that executes advanced AI models, including ResNet3 and BERT20,21, along with the Atari deep reinforcement learning algorithm originally demonstrated by DeepMind22. This processor achieves near-electronic precision for many workloads, marking a notable entry for photonic computing into competition with established electronic AI accelerators23 and an essential step towards developing post-transistor computing technologies. A photonic processor capable of running advanced artificial intelligence models with near-electronic precision is introduced, marking a substantial step towards post-transistor computing technologies.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"640 8058","pages":"368-374"},"PeriodicalIF":50.5000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://www.nature.com/articles/s41586-025-08854-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Over the past decade, photonics research has explored accelerated tensor operations, foundational to artificial intelligence (AI) and deep learning1–4, as a path towards enhanced energy efficiency and performance5–14. The field is centrally motivated by finding alternative technologies to extend computational progress in a post-Moore’s law and Dennard scaling era15–19. Despite these advances, no photonic chip has achieved the precision necessary for practical AI applications, and demonstrations have been limited to simplified benchmark tasks. Here we introduce a photonic AI processor that executes advanced AI models, including ResNet3 and BERT20,21, along with the Atari deep reinforcement learning algorithm originally demonstrated by DeepMind22. This processor achieves near-electronic precision for many workloads, marking a notable entry for photonic computing into competition with established electronic AI accelerators23 and an essential step towards developing post-transistor computing technologies. A photonic processor capable of running advanced artificial intelligence models with near-electronic precision is introduced, marking a substantial step towards post-transistor computing technologies.

Abstract Image

Abstract Image

在过去十年中,光子学研究一直在探索加速张量运算--人工智能(AI)和深度学习的基础1,2,3,4--作为提高能效和性能的途径5,6,7,8,9,10,11,12,13,14。该领域的核心动力是寻找替代技术,在后摩尔定律和登纳德扩展时代扩大计算进展15,16,17,18,19。尽管取得了这些进展,但还没有任何光子芯片达到实际人工智能应用所需的精度,而且演示也仅限于简化的基准任务。在此,我们介绍一种光子人工智能处理器,它可以执行高级人工智能模型,包括 ResNet3 和 BERT20、21,以及 DeepMind 最初展示的 Atari 深度强化学习算法22。该处理器在许多工作负载中实现了接近电子精度的性能,标志着光子计算进入了与成熟的电子人工智能加速器23 竞争的行列,也是向开发后晶体管计算技术迈出的重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature
Nature 综合性期刊-综合性期刊
CiteScore
90.00
自引率
1.20%
发文量
3652
审稿时长
3 months
期刊介绍: Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信