Stable, Easy-to-Handle, Fully Autologous Electrospun Polymer-Peptide Skin Equivalent for Severe Burn Injuries

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Dana Cohen-Gerassi, Marina BenShoshan, Adi Liiani, Tomer Reuveni, Offir Loboda, Moti Harats, Josef Haik, Itzhak Binderman, Yosi Shacham-Diamand, Amit Sitt, Ayelet Di Segni, Lihi Adler-Abramovich
{"title":"Stable, Easy-to-Handle, Fully Autologous Electrospun Polymer-Peptide Skin Equivalent for Severe Burn Injuries","authors":"Dana Cohen-Gerassi, Marina BenShoshan, Adi Liiani, Tomer Reuveni, Offir Loboda, Moti Harats, Josef Haik, Itzhak Binderman, Yosi Shacham-Diamand, Amit Sitt, Ayelet Di Segni, Lihi Adler-Abramovich","doi":"10.1002/adfm.202501745","DOIUrl":null,"url":null,"abstract":"Severe burn injuries represent a significant clinical challenge due to their complex healing process and the high risk of complications, including infection, scarring, and contracture formation. Current therapeutic approaches for burn wound treatment include autologous donor-site grafting and advanced cell therapy techniques like cultured epidermal autografts (CEA), which successfully facilitate wound closure through re-epithelialization. However, CEAs are limited by fragility, shrinkage, lack of a dermal layer, and risks of contamination. Here, aiming to overcome these limitations, this work develops a personalized skin equivalent featuring an engineered scaffold composed of electrospun poly(ε-caprolactone) (PCL) functionalized with the bioactive peptide fluorenylmethyloxycarbonyl-phenylalanine-arginine-glycine-aspartic acid (Fmoc-FRGD). This scaffold is designed to mimic the natural extracellular matrix (ECM), promoting cellular adhesion, integration, and proliferation while maintaining structural integrity. In vitro analysis demonstrated the scaffold's ability to support multi-layered human skin cell growth, while in vivo experiments confirmed its efficacy in facilitating wound closure and full-thickness skin regeneration in a murine model. This bioengineered skin equivalent is mechanically robust, easy to handle, fully autologous and exhibits no contraction, offering a transformative therapeutic alternative for the treatment of severe burn injuries.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"59 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202501745","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Severe burn injuries represent a significant clinical challenge due to their complex healing process and the high risk of complications, including infection, scarring, and contracture formation. Current therapeutic approaches for burn wound treatment include autologous donor-site grafting and advanced cell therapy techniques like cultured epidermal autografts (CEA), which successfully facilitate wound closure through re-epithelialization. However, CEAs are limited by fragility, shrinkage, lack of a dermal layer, and risks of contamination. Here, aiming to overcome these limitations, this work develops a personalized skin equivalent featuring an engineered scaffold composed of electrospun poly(ε-caprolactone) (PCL) functionalized with the bioactive peptide fluorenylmethyloxycarbonyl-phenylalanine-arginine-glycine-aspartic acid (Fmoc-FRGD). This scaffold is designed to mimic the natural extracellular matrix (ECM), promoting cellular adhesion, integration, and proliferation while maintaining structural integrity. In vitro analysis demonstrated the scaffold's ability to support multi-layered human skin cell growth, while in vivo experiments confirmed its efficacy in facilitating wound closure and full-thickness skin regeneration in a murine model. This bioengineered skin equivalent is mechanically robust, easy to handle, fully autologous and exhibits no contraction, offering a transformative therapeutic alternative for the treatment of severe burn injuries.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信