Origin of Lithium Dendrite Formation in Sulfide-Based Electrolyte

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Wei Hao, Yujun Li, Gyeong S. Hwang, Yakun Liu, Zheng Liang
{"title":"Origin of Lithium Dendrite Formation in Sulfide-Based Electrolyte","authors":"Wei Hao,&nbsp;Yujun Li,&nbsp;Gyeong S. Hwang,&nbsp;Yakun Liu,&nbsp;Zheng Liang","doi":"10.1002/anie.202500245","DOIUrl":null,"url":null,"abstract":"<p>The Li dendrite growth during battery cycles is a well-known obstacle to the practical application of sulfide-based electrolytes (SEs), notably Li<sub>3</sub>PS<sub>4</sub> (LPS), in lithium metal batteries. However, there remains a significant gap in understanding the mechanism for Li dendrite penetration through SEs exhibiting high shear modulus. Herein, we investigate the optimum deposition sites for Li<sup>0</sup> atoms within typical LPS configurations, encompassing crystalline, lithiated, and degraded structures, with their ionization levels employed as descriptors to determine the preferential state (Li<sup>0</sup>/Li<sup>+</sup>) of the interstitial Li. Our results suggest that both bulk LPS and solid electrolyte interphase (SEI) layer are predicted to be electrochemically resistive upon Li<sup>0</sup> deposition. Conversely, the defect configurations, including cracks and grain boundaries (GBs), exhibit a marked propensity to promote the electrochemical deposition of Li<sup>0</sup> atoms. Once Li dendrites initiate, the electronic conductivities of those defects undergo a significant surge, catalyzing electron transport and facilitating Li dendrite penetration through the SEs, ultimately driving dendrite growth. Furthermore, we underscore the synergistic interaction between Li dendrite propagation and crack formation within SEs, offering deeper insights into the electrochemical-mechanical degradation mechanism in SEs. These findings present novel methodologies for predicting Li dendrite growth and open up alternative perspectives in SE engineering.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 25","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202500245","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The Li dendrite growth during battery cycles is a well-known obstacle to the practical application of sulfide-based electrolytes (SEs), notably Li3PS4 (LPS), in lithium metal batteries. However, there remains a significant gap in understanding the mechanism for Li dendrite penetration through SEs exhibiting high shear modulus. Herein, we investigate the optimum deposition sites for Li0 atoms within typical LPS configurations, encompassing crystalline, lithiated, and degraded structures, with their ionization levels employed as descriptors to determine the preferential state (Li0/Li+) of the interstitial Li. Our results suggest that both bulk LPS and solid electrolyte interphase (SEI) layer are predicted to be electrochemically resistive upon Li0 deposition. Conversely, the defect configurations, including cracks and grain boundaries (GBs), exhibit a marked propensity to promote the electrochemical deposition of Li0 atoms. Once Li dendrites initiate, the electronic conductivities of those defects undergo a significant surge, catalyzing electron transport and facilitating Li dendrite penetration through the SEs, ultimately driving dendrite growth. Furthermore, we underscore the synergistic interaction between Li dendrite propagation and crack formation within SEs, offering deeper insights into the electrochemical-mechanical degradation mechanism in SEs. These findings present novel methodologies for predicting Li dendrite growth and open up alternative perspectives in SE engineering.

Abstract Image

硫化物基电解液中锂枝晶形成的起源
锂枝晶在电池循环过程中的生长是阻碍硫化物基电解质(SEs)在锂金属电池中的实际应用的一个众所周知的障碍,特别是Li3PS4 (LPS)。然而,在了解Li枝晶穿透具有高剪切模量的se的机制方面仍有很大的差距。在本文中,我们研究了典型LPS结构中Li0原子的最佳沉积位置,包括晶体结构、锂化结构和降解结构,并使用它们的电离水平作为描述符来确定间隙Li的优先状态(Li0/Li+)。我们的研究结果表明,体积LPS和固体电解质间相(SEI)层在Li0沉积时都具有电化学电阻性。相反,缺陷结构,包括裂纹和晶界(GBs),表现出促进Li0原子电化学沉积的显著倾向。一旦锂枝晶启动,这些缺陷的电子电导率就会急剧上升,催化电子传递,促进锂枝晶穿透se,最终驱动枝晶生长。此外,我们强调了锂枝晶扩展和SEs中裂纹形成之间的协同作用,为SEs中的电化学-机械降解机制提供了更深入的见解。这些发现为预测Li枝晶生长提供了新的方法,并为SE工程开辟了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信