Spatially resolved atlas of breast cancer uncovers intercellular machinery of venular niche governing lymphocyte extravasation

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Xin Wang, Zhanyu Wang, Qijun Liao, Pei Yuan, Junpu Mei, Yin Zhang, Chao Wu, Xiyu Kang, Sufei Zheng, Chenxuan Yang, Jiaxiang Liu, Qingyao Shang, Jiangtao Li, Bingning Wang, Liangyu Li, Hui Liu, Weining Hu, Zhensheng Dong, Jie Zhao, Linying Wang, Tao Liu, Yusheng Den, Chengrui Wang, Lijuan Han, Qianjun Chen, Huanming Yang, Xun Xu, Jie He, Zhen Yue, Nan Sun, Xiaodong Fang, Jianming Ying
{"title":"Spatially resolved atlas of breast cancer uncovers intercellular machinery of venular niche governing lymphocyte extravasation","authors":"Xin Wang, Zhanyu Wang, Qijun Liao, Pei Yuan, Junpu Mei, Yin Zhang, Chao Wu, Xiyu Kang, Sufei Zheng, Chenxuan Yang, Jiaxiang Liu, Qingyao Shang, Jiangtao Li, Bingning Wang, Liangyu Li, Hui Liu, Weining Hu, Zhensheng Dong, Jie Zhao, Linying Wang, Tao Liu, Yusheng Den, Chengrui Wang, Lijuan Han, Qianjun Chen, Huanming Yang, Xun Xu, Jie He, Zhen Yue, Nan Sun, Xiaodong Fang, Jianming Ying","doi":"10.1038/s41467-025-58511-0","DOIUrl":null,"url":null,"abstract":"<p>Breast cancers present intricate microenvironments comprising heterotypic cellular interactions, yet a comprehensive spatial map remained to be established. Here, we employed the DNA nanoball-based genome-wide in situ sequencing (Stereo-seq) to visualize the geospatial architecture of 30 primary breast tumors and metastatic lymph nodes across different molecular subtypes. This unprecedented high-resolution atlas unveils the fine structure of the tumor vasculature, highlighting heterogeneity in phenotype, spatial distribution, and intercellular communication within both endothelial and perivascular cells. In particular, venular smooth muscle cells are identified as the primary source of CCL21/CCL19 within the microenvironment. In collaboration with ACKR1-positive endothelial cells, they create a chemokine-rich venular niche to synergistically promote lymphocyte extravasation into tumors. High venule density predicts increased immune infiltration and improved clinical outcomes. This study provides a detailed spatial landscape of human breast cancer, offering key insights into the venular regulation of tumor immune infiltration.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58511-0","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Breast cancers present intricate microenvironments comprising heterotypic cellular interactions, yet a comprehensive spatial map remained to be established. Here, we employed the DNA nanoball-based genome-wide in situ sequencing (Stereo-seq) to visualize the geospatial architecture of 30 primary breast tumors and metastatic lymph nodes across different molecular subtypes. This unprecedented high-resolution atlas unveils the fine structure of the tumor vasculature, highlighting heterogeneity in phenotype, spatial distribution, and intercellular communication within both endothelial and perivascular cells. In particular, venular smooth muscle cells are identified as the primary source of CCL21/CCL19 within the microenvironment. In collaboration with ACKR1-positive endothelial cells, they create a chemokine-rich venular niche to synergistically promote lymphocyte extravasation into tumors. High venule density predicts increased immune infiltration and improved clinical outcomes. This study provides a detailed spatial landscape of human breast cancer, offering key insights into the venular regulation of tumor immune infiltration.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信