Non-reciprocal response in silicon photonic resonators integrated with 2D CuCrP2S6 at short-wave infrared

IF 20.6 Q1 OPTICS
Ghada Dushaq, Solomon Serunjogi, Srinivasa R. Tamalampudi, Mahmoud Rasras
{"title":"Non-reciprocal response in silicon photonic resonators integrated with 2D CuCrP2S6 at short-wave infrared","authors":"Ghada Dushaq, Solomon Serunjogi, Srinivasa R. Tamalampudi, Mahmoud Rasras","doi":"10.1038/s41377-025-01826-w","DOIUrl":null,"url":null,"abstract":"<p>Achieving non-reciprocal optical behavior in integrated photonics with high efficiency has long been a challenge. Here, we demonstrate a non-reciprocal magneto-optic response by integrating multilayer 2D CuCrP<sub>2</sub>S<sub>6</sub> (CCPS) onto silicon microring resonators (MRRs). Under an applied magnetic field, the CCPS intralayer ferromagnetic ordering, characterized by easy-plane magneto-crystalline anisotropy, induces asymmetrical modal responses in the clockwise (CW) and counterclockwise (CCW) light propagation directions. The proposed configuration achieves a low insertion loss ranging from 0.15 dB to 1.8 dB and a high isolation ratio of 28 dB at 1550 nm. Notably, it exhibits a significant resonance wavelength splitting of 0.4 nm between the counter propagation directions, supporting a 50 GHz optical bandwidth. Operating directly in the transverse electric (TE) mode, it aligns with the main polarization used in silicon photonics circuits, eliminating the need for additional polarization management. The device is ultra-compact, with a 2D flake interaction length ranging from 22 µm to 55 µm and a thickness between 39 nm and 62 nm. Its operation range covers the entire C-band with a bandwidth of up to 100 nm. These attributes make our hybrid CCPS/Si device ideal for advanced non-reciprocal optical applications in the short-wave infrared (SWIR) spectrum, crucial for enhancing the resilience of optical systems against back-reflections.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"394 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-01826-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Achieving non-reciprocal optical behavior in integrated photonics with high efficiency has long been a challenge. Here, we demonstrate a non-reciprocal magneto-optic response by integrating multilayer 2D CuCrP2S6 (CCPS) onto silicon microring resonators (MRRs). Under an applied magnetic field, the CCPS intralayer ferromagnetic ordering, characterized by easy-plane magneto-crystalline anisotropy, induces asymmetrical modal responses in the clockwise (CW) and counterclockwise (CCW) light propagation directions. The proposed configuration achieves a low insertion loss ranging from 0.15 dB to 1.8 dB and a high isolation ratio of 28 dB at 1550 nm. Notably, it exhibits a significant resonance wavelength splitting of 0.4 nm between the counter propagation directions, supporting a 50 GHz optical bandwidth. Operating directly in the transverse electric (TE) mode, it aligns with the main polarization used in silicon photonics circuits, eliminating the need for additional polarization management. The device is ultra-compact, with a 2D flake interaction length ranging from 22 µm to 55 µm and a thickness between 39 nm and 62 nm. Its operation range covers the entire C-band with a bandwidth of up to 100 nm. These attributes make our hybrid CCPS/Si device ideal for advanced non-reciprocal optical applications in the short-wave infrared (SWIR) spectrum, crucial for enhancing the resilience of optical systems against back-reflections.

Abstract Image

硅光子谐振器中与二维 CuCrP2S6 集成的短波红外非互惠响应
在集成光子学中实现高效率的非倒易光学行为一直是一个挑战。在这里,我们通过将多层二维CuCrP2S6 (CCPS)集成到硅微环谐振器(mrr)上,展示了非互反磁光响应。在外加磁场作用下,具有易平面磁晶各向异性的CCPS层内铁磁有序结构在顺时针(CW)和逆时针(CCW)光传播方向上引起不对称的模态响应。所提出的配置实现了从0.15 dB到1.8 dB的低插入损耗和1550 nm的28 dB的高隔离比。值得注意的是,它在反向传播方向之间表现出0.4 nm的显著共振波长分裂,支持50 GHz的光带宽。直接在横向电(TE)模式下工作,它与硅光子电路中使用的主极化一致,消除了额外极化管理的需要。该器件超紧凑,2D薄片相互作用长度为22µm至55µm,厚度为39 nm至62 nm。其工作范围覆盖整个c波段,带宽可达100nm。这些特性使我们的混合CCPS/Si器件成为短波红外(SWIR)光谱中先进的非互易光学应用的理想选择,这对于增强光学系统抗背反射的弹性至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信