{"title":"A general relativistic kinetic theory approach to linear transport in generic hydrodynamic frame","authors":"Long Cui, Xin Hao, Liu Zhao","doi":"10.1515/jnet-2024-0024","DOIUrl":null,"url":null,"abstract":"In this study, we investigate the linear transport of neutral system within the framework of relativistic kinetic theory. Under the relaxation time approximation, we obtain an iterative solution to the relativistic Boltzmann equation in generic stationary spacetime. This solution provides a scheme to study non-equilibrium system order by order. Our calculations are performed in generic hydrodynamic frame, and the results can be reduced to a specific hydrodynamic frame by imposing constraints. As a specific example, we analytically calculated the covariant expressions of the particle flow and the energy momentum tensor up to the first order in relaxation time. Finally and most importantly, we present all 14 kinetic coefficients for a neutral system, which are verified to satisfy the Onsager reciprocal relation in a generic hydrodynamic frame and guarantee a non-negative entropy production in the frame where the first order conservation laws are restored.","PeriodicalId":16428,"journal":{"name":"Journal of Non-Equilibrium Thermodynamics","volume":"32 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Equilibrium Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/jnet-2024-0024","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we investigate the linear transport of neutral system within the framework of relativistic kinetic theory. Under the relaxation time approximation, we obtain an iterative solution to the relativistic Boltzmann equation in generic stationary spacetime. This solution provides a scheme to study non-equilibrium system order by order. Our calculations are performed in generic hydrodynamic frame, and the results can be reduced to a specific hydrodynamic frame by imposing constraints. As a specific example, we analytically calculated the covariant expressions of the particle flow and the energy momentum tensor up to the first order in relaxation time. Finally and most importantly, we present all 14 kinetic coefficients for a neutral system, which are verified to satisfy the Onsager reciprocal relation in a generic hydrodynamic frame and guarantee a non-negative entropy production in the frame where the first order conservation laws are restored.
期刊介绍:
The Journal of Non-Equilibrium Thermodynamics serves as an international publication organ for new ideas, insights and results on non-equilibrium phenomena in science, engineering and related natural systems. The central aim of the journal is to provide a bridge between science and engineering and to promote scientific exchange on a) newly observed non-equilibrium phenomena, b) analytic or numeric modeling for their interpretation, c) vanguard methods to describe non-equilibrium phenomena.
Contributions should – among others – present novel approaches to analyzing, modeling and optimizing processes of engineering relevance such as transport processes of mass, momentum and energy, separation of fluid phases, reproduction of living cells, or energy conversion. The journal is particularly interested in contributions which add to the basic understanding of non-equilibrium phenomena in science and engineering, with systems of interest ranging from the macro- to the nano-level.
The Journal of Non-Equilibrium Thermodynamics has recently expanded its scope to place new emphasis on theoretical and experimental investigations of non-equilibrium phenomena in thermophysical, chemical, biochemical and abstract model systems of engineering relevance. We are therefore pleased to invite submissions which present newly observed non-equilibrium phenomena, analytic or fuzzy models for their interpretation, or new methods for their description.