Disorder robust, ultra-low power, continuous-wave four-wave mixing in a topological waveguide

IF 6.5 2区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ju Won Choi, Byoung-Uk Sohn, George F.R. Chen, Hongwei Gao, William J. Mitchell, Doris K.T. Ng, Dawn T.H. Tan
{"title":"Disorder robust, ultra-low power, continuous-wave four-wave mixing in a topological waveguide","authors":"Ju Won Choi, Byoung-Uk Sohn, George F.R. Chen, Hongwei Gao, William J. Mitchell, Doris K.T. Ng, Dawn T.H. Tan","doi":"10.1515/nanoph-2024-0659","DOIUrl":null,"url":null,"abstract":"Four-wave mixing is a widely used nonlinear process for wavelength conversion, parametric amplification and signal regeneration in various Kerr devices, which enables wavelength-tunability and lower-power operation in compact optical systems. Here, we demonstrate low-power continuous-wave four-wave mixing in an ultra-silicon-rich nitride topological waveguide leveraging the strong confinement of the Su–Schrieffer–Heeger topological structure and ultra-silicon-rich nitride platform’s high Kerr nonlinearity and negligible nonlinear loss. We experimentally observe continuous-wave four-wave mixing at an ultra-low pump power of 510 µW, and wavelength tunability of 54 nm with on/off conversion efficiency of −57 dB at a pump power of 3 mW. We further investigate the efficiency of the four-wave mixing process when disorder is introduced into the Su–Schrieffer–Heeger waveguide array resulting in ±80 % randomness in the coupling coefficients. It is experimentally shown that similar conversion efficiencies are achieved in the presence and absence of disorder, indicating robustness against potential fabrication errors. We expect that this work can be applied to develop compact, tunable wavelength conversion systems operating at very low power levels which are robust against certain types of disorder.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"74 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0659","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Four-wave mixing is a widely used nonlinear process for wavelength conversion, parametric amplification and signal regeneration in various Kerr devices, which enables wavelength-tunability and lower-power operation in compact optical systems. Here, we demonstrate low-power continuous-wave four-wave mixing in an ultra-silicon-rich nitride topological waveguide leveraging the strong confinement of the Su–Schrieffer–Heeger topological structure and ultra-silicon-rich nitride platform’s high Kerr nonlinearity and negligible nonlinear loss. We experimentally observe continuous-wave four-wave mixing at an ultra-low pump power of 510 µW, and wavelength tunability of 54 nm with on/off conversion efficiency of −57 dB at a pump power of 3 mW. We further investigate the efficiency of the four-wave mixing process when disorder is introduced into the Su–Schrieffer–Heeger waveguide array resulting in ±80 % randomness in the coupling coefficients. It is experimentally shown that similar conversion efficiencies are achieved in the presence and absence of disorder, indicating robustness against potential fabrication errors. We expect that this work can be applied to develop compact, tunable wavelength conversion systems operating at very low power levels which are robust against certain types of disorder.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanophotonics
Nanophotonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
13.50
自引率
6.70%
发文量
358
审稿时长
7 weeks
期刊介绍: Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives. The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信