Chenyi Li, Yang Liu, Bo Li, Ze Yuan, Tiannan Yang, Yuquan Liu, Hanxiao Gao, Linxiao Xu, Xiang Yu, Quan Luo, Shengfei Tang, Minghai Yao, Yutie Gong, Zekai Fei, Long-Qing Chen, Haibo Zhang, Huamin Zhou, Qing Wang
{"title":"Enhanced energy storage in high-entropy ferroelectric polymers","authors":"Chenyi Li, Yang Liu, Bo Li, Ze Yuan, Tiannan Yang, Yuquan Liu, Hanxiao Gao, Linxiao Xu, Xiang Yu, Quan Luo, Shengfei Tang, Minghai Yao, Yutie Gong, Zekai Fei, Long-Qing Chen, Haibo Zhang, Huamin Zhou, Qing Wang","doi":"10.1038/s41563-025-02211-z","DOIUrl":null,"url":null,"abstract":"<p>Relaxor ferroelectrics have been intensively studied during the past two decades for capacitive energy storage in modern electronics and electrical power systems. However, the energy density of relaxor ferroelectrics is fundamentally limited by early polarization saturation and largely reduced polarization despite high dielectric constants. To overcome this challenge, here we report the formation of a high-entropy superparaelectric phase in relaxor ferroelectric polymers induced by low-dose proton irradiation, which exhibits delayed polarization saturation, reduced ferroelectric loss and markedly improved polarizability. Our combined theoretical and experimental results reveal that new chemical bonds generated by the irradiation-induced chemical reactions are essential to the formation of the high-entropy state in ferroelectric polymers. The high-entropy superparaelectric phase endows the polymer with a substantially enhanced intrinsic energy density of 45.7 J cm<sup>–3</sup> at room temperature, outperforming the current ferroelectric polymers and nanocomposites under the same electric field. Our work widens the high-entropy concept in ferroelectrics and lays the foundation for the future exploration of high-performance ferroelectric polymers.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"21 1","pages":""},"PeriodicalIF":37.2000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-025-02211-z","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Relaxor ferroelectrics have been intensively studied during the past two decades for capacitive energy storage in modern electronics and electrical power systems. However, the energy density of relaxor ferroelectrics is fundamentally limited by early polarization saturation and largely reduced polarization despite high dielectric constants. To overcome this challenge, here we report the formation of a high-entropy superparaelectric phase in relaxor ferroelectric polymers induced by low-dose proton irradiation, which exhibits delayed polarization saturation, reduced ferroelectric loss and markedly improved polarizability. Our combined theoretical and experimental results reveal that new chemical bonds generated by the irradiation-induced chemical reactions are essential to the formation of the high-entropy state in ferroelectric polymers. The high-entropy superparaelectric phase endows the polymer with a substantially enhanced intrinsic energy density of 45.7 J cm–3 at room temperature, outperforming the current ferroelectric polymers and nanocomposites under the same electric field. Our work widens the high-entropy concept in ferroelectrics and lays the foundation for the future exploration of high-performance ferroelectric polymers.
期刊介绍:
Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology.
Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines.
Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.