Gerrit S. Farren, Alex Krolewski, Frank J. Qu, Simone Ferraro, Erminia Calabrese, Jo Dunkley, Carmen Embil Villagra, J. Colin Hill, Joshua Kim, Mathew S. Madhavacheril, Kavilan Moodley, Lyman A. Page, Bruce Partridge, Neelima Sehgal, Blake D. Sherwin, Cristóbal Sifón, Suzanne T. Staggs, Alexander Van Engelen, Edward J. Wollack
{"title":"Atacama Cosmology Telescope: Multiprobe cosmology with unWISE galaxies and ACT DR6 CMB lensing","authors":"Gerrit S. Farren, Alex Krolewski, Frank J. Qu, Simone Ferraro, Erminia Calabrese, Jo Dunkley, Carmen Embil Villagra, J. Colin Hill, Joshua Kim, Mathew S. Madhavacheril, Kavilan Moodley, Lyman A. Page, Bruce Partridge, Neelima Sehgal, Blake D. Sherwin, Cristóbal Sifón, Suzanne T. Staggs, Alexander Van Engelen, Edward J. Wollack","doi":"10.1103/physrevd.111.083516","DOIUrl":null,"url":null,"abstract":"We present a joint analysis of the cosmic microwave background (CMB) lensing power spectra measured from the Data Release 6 of the Atacama Cosmology Telescope (ACT) and PR4, cross-correlations between the ACT and lensing reconstruction and galaxy clustering from unWISE, and the unWISE clustering auto-spectrum. We obtain 1.5% constraints on the matter density fluctuations at late times parametrized by the best constrained parameter combination S</a:mi></a:mrow>8</a:mn></a:mrow>3</a:mn>x</a:mi>2</a:mn>pt</a:mi></a:mrow></a:msubsup>≡</a:mo>σ</a:mi></a:mrow>8</a:mn></a:mrow></a:msub>(</a:mo>Ω</a:mi></a:mrow>m</a:mi></a:mrow></a:msub>/</a:mo>0.3</a:mn>)</a:mo></a:mrow>0.4</a:mn></a:mrow></a:msup>=</a:mo>0.815</a:mn>±</a:mo>0.012</a:mn></a:mrow></a:math>. The commonly used <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:msub><g:mi>S</g:mi><g:mn>8</g:mn></g:msub><g:mo>≡</g:mo><g:msub><g:mi>σ</g:mi><g:mn>8</g:mn></g:msub><g:mo stretchy=\"false\">(</g:mo><g:msub><g:mi mathvariant=\"normal\">Ω</g:mi><g:mi>m</g:mi></g:msub><g:mo>/</g:mo><g:mn>0.3</g:mn><g:msup><g:mo stretchy=\"false\">)</g:mo><g:mn>0.5</g:mn></g:msup></g:math> parameter is constrained to <l:math xmlns:l=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><l:msub><l:mi>S</l:mi><l:mn>8</l:mn></l:msub><l:mo>=</l:mo><l:mn>0.816</l:mn><l:mo>±</l:mo><l:mn>0.015</l:mn></l:math>. In combination with baryon acoustic oscillation (BAO) measurements we find <n:math xmlns:n=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><n:msub><n:mi>σ</n:mi><n:mn>8</n:mn></n:msub><n:mo>=</n:mo><n:mn>0.815</n:mn><n:mo>±</n:mo><n:mn>0.012</n:mn></n:math>. We also present sound-horizon-independent estimates of the present day Hubble rate of <p:math xmlns:p=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><p:mrow><p:msub><p:mrow><p:mi>H</p:mi></p:mrow><p:mrow><p:mn>0</p:mn></p:mrow></p:msub><p:mo>=</p:mo><p:msubsup><p:mrow><p:mn>66.4</p:mn></p:mrow><p:mrow><p:mo>−</p:mo><p:mn>3.7</p:mn></p:mrow><p:mrow><p:mo>+</p:mo><p:mn>3.2</p:mn></p:mrow></p:msubsup><p:mtext> </p:mtext><p:mtext> </p:mtext><p:mi>km</p:mi><p:mtext> </p:mtext><p:msup><p:mrow><p:mi mathvariant=\"normal\">s</p:mi></p:mrow><p:mrow><p:mo>−</p:mo><p:mn>1</p:mn></p:mrow></p:msup><p:mtext> </p:mtext><p:msup><p:mrow><p:mi>Mpc</p:mi></p:mrow><p:mrow><p:mo>−</p:mo><p:mn>1</p:mn></p:mrow></p:msup></p:mrow></p:math> from our large scale structure data alone and <s:math xmlns:s=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><s:msub><s:mi>H</s:mi><s:mn>0</s:mn></s:msub><s:mo>=</s:mo><s:msubsup><s:mn>64.3</s:mn><s:mrow><s:mo>−</s:mo><s:mn>2.4</s:mn></s:mrow><s:mrow><s:mo>+</s:mo><s:mn>2.1</s:mn></s:mrow></s:msubsup><s:mtext> </s:mtext><s:mtext> </s:mtext><s:mi>km</s:mi><s:mtext> </s:mtext><s:msup><s:mi mathvariant=\"normal\">s</s:mi><s:mrow><s:mo>−</s:mo><s:mn>1</s:mn></s:mrow></s:msup><s:mtext> </s:mtext><s:msup><s:mrow><s:mi>Mpc</s:mi></s:mrow><s:mrow><s:mo>−</s:mo><s:mn>1</s:mn></s:mrow></s:msup></s:math> in combination with uncalibrated supernovae from . Using parametric estimates of the evolution of matter density fluctuations, we place constraints on cosmic structure in a range of high redshifts typically inaccessible with cross-correlation analyses. Combining lensing cross- and autocorrelations, we derive a 3.3% constraint on the integrated matter density fluctuations above <v:math xmlns:v=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><v:mi>z</v:mi><v:mo>=</v:mo><v:mn>2.4</v:mn></v:math>, one of the tightest constraints in this redshift range and fully consistent with a <x:math xmlns:x=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><x:mrow><x:mi mathvariant=\"normal\">Λ</x:mi></x:mrow></x:math> cold dark matter (Λ</ab:mi>CDM</ab:mi></ab:math>) model fit to the primary CMB from . Finally, combining with primary CMB observations and using the extended low redshift coverage of these combined datasets we derive constraints on a variety of extensions to the <db:math xmlns:db=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><db:mi mathvariant=\"normal\">Λ</db:mi><db:mi>CDM</db:mi></db:math> model including massive neutrinos, spatial curvature, and dark energy. We find in flat <gb:math xmlns:gb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><gb:mi mathvariant=\"normal\">Λ</gb:mi><gb:mi>CDM</gb:mi><gb:mo>∑</gb:mo><gb:msub><gb:mi>m</gb:mi><gb:mi>ν</gb:mi></gb:msub><gb:mo><</gb:mo><gb:mn>0.12</gb:mn><gb:mtext> </gb:mtext><gb:mtext> </gb:mtext><gb:mi>eV</gb:mi></gb:math> at 95% confidence using the large scale structure data, BAO measurements from Sloan Digital Sky Survey, and primary CMB observations. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"23 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.083516","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
We present a joint analysis of the cosmic microwave background (CMB) lensing power spectra measured from the Data Release 6 of the Atacama Cosmology Telescope (ACT) and PR4, cross-correlations between the ACT and lensing reconstruction and galaxy clustering from unWISE, and the unWISE clustering auto-spectrum. We obtain 1.5% constraints on the matter density fluctuations at late times parametrized by the best constrained parameter combination S83x2pt≡σ8(Ωm/0.3)0.4=0.815±0.012. The commonly used S8≡σ8(Ωm/0.3)0.5 parameter is constrained to S8=0.816±0.015. In combination with baryon acoustic oscillation (BAO) measurements we find σ8=0.815±0.012. We also present sound-horizon-independent estimates of the present day Hubble rate of H0=66.4−3.7+3.2kms−1Mpc−1 from our large scale structure data alone and H0=64.3−2.4+2.1kms−1Mpc−1 in combination with uncalibrated supernovae from . Using parametric estimates of the evolution of matter density fluctuations, we place constraints on cosmic structure in a range of high redshifts typically inaccessible with cross-correlation analyses. Combining lensing cross- and autocorrelations, we derive a 3.3% constraint on the integrated matter density fluctuations above z=2.4, one of the tightest constraints in this redshift range and fully consistent with a Λ cold dark matter (ΛCDM) model fit to the primary CMB from . Finally, combining with primary CMB observations and using the extended low redshift coverage of these combined datasets we derive constraints on a variety of extensions to the ΛCDM model including massive neutrinos, spatial curvature, and dark energy. We find in flat ΛCDM∑mν<0.12eV at 95% confidence using the large scale structure data, BAO measurements from Sloan Digital Sky Survey, and primary CMB observations. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.