Predicting 1p/19q Codeletion Status in Glioma Using MRI-Derived Radiomics; A Systematic Review and Meta-Analysis of Diagnostic Accuracy.

Amir Mahmoud Ahmadzadeh, Nima Broomand Lomer, Mohammad Amin Ashoobi, Danial Elyassirad, Benyamin Gheiji, Mahsa Vatanparast, Seyed Ali Jalalian, Mehdi Arab, Farrokh Seilanian Toosi, Girish Bathla, Shahriar Faghani
{"title":"Predicting 1p/19q Codeletion Status in Glioma Using MRI-Derived Radiomics; A Systematic Review and Meta-Analysis of Diagnostic Accuracy.","authors":"Amir Mahmoud Ahmadzadeh, Nima Broomand Lomer, Mohammad Amin Ashoobi, Danial Elyassirad, Benyamin Gheiji, Mahsa Vatanparast, Seyed Ali Jalalian, Mehdi Arab, Farrokh Seilanian Toosi, Girish Bathla, Shahriar Faghani","doi":"10.3174/ajnr.A8771","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The 1p/19q codeletion is a key genetic marker in gliomas and plays a crucial role in prognosis and treatment decisions. Traditional methods for detecting this genetic alteration rely on invasive tissue biopsies.</p><p><strong>Purpose: </strong>This systematic review and meta-analysis aimed to evaluate the performance of magnetic resonance imaging (MRI)-derived radiomics-based models to predict glioma 1p/19q codeletion status.</p><p><strong>Data sources: </strong>A literature search was conducted in four databases-PubMed, Web of Science, Embase, and Scopus.</p><p><strong>Study selection: </strong>We selected the studies that assessed the performance of radiomics-based models in determining 1p/19q codeletion status.</p><p><strong>Data analysis: </strong>The METhodological RadiomICs Score (METRICS) was used to evaluate study quality. Pooled diagnostic estimates were calculated, and heterogeneity was assessed using the I<sup>2</sup> statistic. Subgroup and sensitivity analyses were performed to investigate potential sources of heterogeneity. Deeks' funnel plot was used to assess publication bias.</p><p><strong>Data synthesis: </strong>Twenty-eight studies met the inclusion criteria for the systematic review. A meta-analysis of 10 studies yielded a pooled sensitivity of 0.82 (95% CI: 0.67-0.91), specificity of 0.80 (95% CI: 0.70-0.88), positive diagnostic likelihood (DLR) of 4.14 (95%CI: 2.62-6.52), negative DLR of 0.23 (95% CI: 0.12-0.43), diagnostic odds ratio of 18.37 (95% CI: 7.36-45.85), and area under the curve of 0.87 (95% CI: 0.84-0.90). Subgroup analysis revealed significant differences based on the country and segmentation method.</p><p><strong>Limitations: </strong>Our meta-analysis is limited by small number of studies with external validation cohorts.</p><p><strong>Conclusions: </strong>MRI-derived radiomics-based models demonstrated good predictive performance for glioma 1p/19q codeletion status, highlighting their potential as a non-invasive tool for glioma characterization and for aiding in treatment decision-making.</p><p><strong>Abbreviations: </strong>DLR: diagnostic likelihood ratio, DOR: diagnostic odds ratio, AUC =area under the curve; HOIV: holdout internal validation, EV = external validation.</p>","PeriodicalId":93863,"journal":{"name":"AJNR. American journal of neuroradiology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AJNR. American journal of neuroradiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3174/ajnr.A8771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The 1p/19q codeletion is a key genetic marker in gliomas and plays a crucial role in prognosis and treatment decisions. Traditional methods for detecting this genetic alteration rely on invasive tissue biopsies.

Purpose: This systematic review and meta-analysis aimed to evaluate the performance of magnetic resonance imaging (MRI)-derived radiomics-based models to predict glioma 1p/19q codeletion status.

Data sources: A literature search was conducted in four databases-PubMed, Web of Science, Embase, and Scopus.

Study selection: We selected the studies that assessed the performance of radiomics-based models in determining 1p/19q codeletion status.

Data analysis: The METhodological RadiomICs Score (METRICS) was used to evaluate study quality. Pooled diagnostic estimates were calculated, and heterogeneity was assessed using the I2 statistic. Subgroup and sensitivity analyses were performed to investigate potential sources of heterogeneity. Deeks' funnel plot was used to assess publication bias.

Data synthesis: Twenty-eight studies met the inclusion criteria for the systematic review. A meta-analysis of 10 studies yielded a pooled sensitivity of 0.82 (95% CI: 0.67-0.91), specificity of 0.80 (95% CI: 0.70-0.88), positive diagnostic likelihood (DLR) of 4.14 (95%CI: 2.62-6.52), negative DLR of 0.23 (95% CI: 0.12-0.43), diagnostic odds ratio of 18.37 (95% CI: 7.36-45.85), and area under the curve of 0.87 (95% CI: 0.84-0.90). Subgroup analysis revealed significant differences based on the country and segmentation method.

Limitations: Our meta-analysis is limited by small number of studies with external validation cohorts.

Conclusions: MRI-derived radiomics-based models demonstrated good predictive performance for glioma 1p/19q codeletion status, highlighting their potential as a non-invasive tool for glioma characterization and for aiding in treatment decision-making.

Abbreviations: DLR: diagnostic likelihood ratio, DOR: diagnostic odds ratio, AUC =area under the curve; HOIV: holdout internal validation, EV = external validation.

mri放射组学预测胶质瘤1p/19q编码状态诊断准确性的系统回顾和荟萃分析。
背景:1p/19q编码是胶质瘤的关键遗传标记,在胶质瘤的预后和治疗决策中起着至关重要的作用。检测这种基因改变的传统方法依赖于侵入性组织活检。目的:本系统综述和荟萃分析旨在评估磁共振成像(MRI)衍生的基于放射组学的模型在预测胶质瘤1p/19q编码状态方面的性能。数据来源:在pubmed、Web of Science、Embase和Scopus四个数据库中进行文献检索。研究选择:我们选择了评估基于放射组学的模型在确定1p/19q编码状态方面的性能的研究。数据分析:采用方法学放射组学评分(METRICS)评价研究质量。计算合并诊断估计值,并使用I2统计量评估异质性。进行亚组分析和敏感性分析,以调查异质性的潜在来源。采用Deeks漏斗图评估发表偏倚。数据综合:28项研究符合系统评价的纳入标准。对10项研究的荟萃分析得出,合并敏感性为0.82 (95%CI: 0.67-0.91),特异性为0.80 (95%CI: 0.70-0.88),阳性诊断似然(DLR)为4.14 (95%CI: 2.62-6.52),阴性诊断似然(DLR)为0.23 (95%CI: 0.12-0.43),诊断优势比为18.37 (95%CI: 7.36-45.85),曲线下面积为0.87 (95%CI: 0.84-0.90)。亚组分析显示了基于国家和细分方法的显著差异。局限性:我们的荟萃分析受到少数具有外部验证队列的研究的限制。结论:mri衍生的基于放射组学的模型对胶质瘤1p/19q编码状态具有良好的预测性能,突出了它们作为胶质瘤表征和辅助治疗决策的非侵入性工具的潜力。缩写:DLR:诊断似然比;DOR:诊断优势比;AUC:曲线下面积;HOIV:内部验证,EV =外部验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信