Mining Social Media Data for Influenza Vaccine Effectiveness Using a Large Language Model and Chain-of-Thought Prompting.

Dongfang Xu, Guillermo López García, Karen O'Connor, Haily Holston, Ari Z Klein, Ivan Flores Amaro, Matthew Scotch, Graciela Gonzalez-Hernandez
{"title":"Mining Social Media Data for Influenza Vaccine Effectiveness Using a Large Language Model and Chain-of-Thought Prompting.","authors":"Dongfang Xu, Guillermo López García, Karen O'Connor, Haily Holston, Ari Z Klein, Ivan Flores Amaro, Matthew Scotch, Graciela Gonzalez-Hernandez","doi":"10.1101/2025.03.26.25324701","DOIUrl":null,"url":null,"abstract":"<p><p>Influenza vaccine effectiveness (VE) estimation plays a critical role in public health decision-making by quantifying the real-world impact of vaccination campaigns and guiding policy adjustments. Current approaches to VE estimation are constrained by limited population representation, selection bias, and delayed reporting. To address some of these gaps, we propose leveraging large language models (LLMs) with few-shot chain-of-thought (CoT) prompting to mine social media data for real-time influenza VE estimation. We annotated over 4,000 tweets from the 2020-2021 flu season using structured guidelines, achieving high inter-annotator agreement. Our best prompting strategy achieves F <sub>1</sub> scores above 87% for identifying influenza vaccination status and test outcomes, outperforming traditional supervised fine-tuning methods by large margins. These findings indicate that LLM-based prompting approaches effectively identify relevant social media information for influenza VE estimation, offering a valuable real-time surveillance tool that complements traditional epidemiological methods.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11974990/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.03.26.25324701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Influenza vaccine effectiveness (VE) estimation plays a critical role in public health decision-making by quantifying the real-world impact of vaccination campaigns and guiding policy adjustments. Current approaches to VE estimation are constrained by limited population representation, selection bias, and delayed reporting. To address some of these gaps, we propose leveraging large language models (LLMs) with few-shot chain-of-thought (CoT) prompting to mine social media data for real-time influenza VE estimation. We annotated over 4,000 tweets from the 2020-2021 flu season using structured guidelines, achieving high inter-annotator agreement. Our best prompting strategy achieves F 1 scores above 87% for identifying influenza vaccination status and test outcomes, outperforming traditional supervised fine-tuning methods by large margins. These findings indicate that LLM-based prompting approaches effectively identify relevant social media information for influenza VE estimation, offering a valuable real-time surveillance tool that complements traditional epidemiological methods.

使用大型语言模型和思维链提示挖掘流感疫苗有效性的社交媒体数据。
流感疫苗有效性(VE)估算通过量化疫苗接种活动的实际影响和指导政策调整,在公共卫生决策中发挥着至关重要的作用。目前的 VE 估算方法受到人口代表性有限、选择偏差和延迟报告等因素的制约。为了弥补其中的一些不足,我们建议利用大型语言模型(LLM)和少量思维链(CoT)提示来挖掘社交媒体数据,以进行实时流感VE估算。我们使用结构化指南对 2020-2021 年流感季节的 4,000 多条推文进行了注释,注释者之间达成了高度一致。我们的最佳提示策略在识别流感疫苗接种状态和测试结果方面的 F 1 得分超过了 87%,远远超过了传统的监督微调方法。这些研究结果表明,基于 LLM 的提示方法能有效识别用于估算流感 VE 的相关社交媒体信息,提供了一种有价值的实时监控工具,是对传统流行病学方法的补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信